395 lines
12 KiB
JavaScript
395 lines
12 KiB
JavaScript
import * as turf from "@turf/turf";
|
||
import { toMercator, toWgs84 } from '@turf/projection';
|
||
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
|
||
|
||
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
|
||
const map = new mapboxgl.Map({
|
||
container: 'map',
|
||
center: [10, 50],
|
||
zoom: 5
|
||
});
|
||
|
||
|
||
map.on('load', () => {
|
||
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
|
||
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
|
||
const circle = turf.circle([20, 80], 120000, { units: "meters", steps: 64 }); // Circle created directly with the Turf library
|
||
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
|
||
|
||
//ARROW
|
||
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
|
||
map.addLayer({
|
||
"id": "arrow-shape",
|
||
"type": "fill",
|
||
"source": "arrow-shape",
|
||
"paint": {
|
||
"fill-color": "#ff0000",
|
||
"fill-opacity": 0.7
|
||
}
|
||
});
|
||
map.addLayer({
|
||
"id": "arrow-outline",
|
||
"type": "line",
|
||
"source": "arrow-shape",
|
||
"paint": {
|
||
"line-color": "#000000",
|
||
"line-width": 2,
|
||
"line-opacity": 1
|
||
}
|
||
});
|
||
//ARROW
|
||
|
||
// CIRCLE
|
||
map.addSource("circlePolygon", {
|
||
"type": "geojson",
|
||
"data": circleGeoJSON
|
||
});
|
||
|
||
map.addLayer({
|
||
"id": "circlePolygon",
|
||
"type": "fill",
|
||
"source": "circlePolygon",
|
||
"layout": {},
|
||
"paint": {
|
||
"fill-color": "blue",
|
||
"fill-opacity": 0.6
|
||
}
|
||
});
|
||
map.addLayer({
|
||
"id": "circlePolygon-outline",
|
||
"type": "line",
|
||
"source": "circlePolygon",
|
||
"paint": {
|
||
"line-color": "#000000",
|
||
"line-width": 2,
|
||
"line-opacity": 1
|
||
}
|
||
});
|
||
// CIRCLE
|
||
|
||
// RECTANGLE
|
||
map.addSource("rectanglePolygon", {
|
||
"type": "geojson",
|
||
"data": rectangleGeoJSON
|
||
});
|
||
|
||
// Přidání vrstvy pro vykreslení polygonu
|
||
map.addLayer({
|
||
"id": "rectanglePolygon",
|
||
"type": "fill",
|
||
"source": "rectanglePolygon",
|
||
"layout": {},
|
||
"paint": {
|
||
"fill-color": "red",
|
||
"fill-opacity": 0.6
|
||
}
|
||
});
|
||
|
||
// Přidání outline pro polygon
|
||
map.addLayer({
|
||
"id": "rectanglePolygon-outline",
|
||
"type": "line",
|
||
"source": "rectanglePolygon",
|
||
"paint": {
|
||
"line-color": "#000",
|
||
"line-width": 3
|
||
}
|
||
});
|
||
// RECTANGLE
|
||
|
||
//MAP GRID
|
||
const grid = generateLatLonGrid(10);
|
||
map.addSource("latLonGrid", { type: "geojson", data: grid });
|
||
map.addLayer({
|
||
id: "latLonGrid",
|
||
type: "line",
|
||
source: "latLonGrid",
|
||
paint: {
|
||
"line-color": "#888",
|
||
"line-width": 1,
|
||
"line-opacity": 0.5
|
||
}
|
||
});
|
||
//MAP GRID
|
||
});
|
||
|
||
//ARROW
|
||
const points = [
|
||
[1.42076, 40.08804],
|
||
[15.42076, 80.08804],
|
||
[55.42076, 75.08804],
|
||
[120.42076, 40.08804],
|
||
[358.4050, 50.52]
|
||
];
|
||
const arrowData = {
|
||
points: points,
|
||
splineStep: 20,
|
||
spacing: 0.01,
|
||
offsetDistance: 20000
|
||
};
|
||
const style = {
|
||
calculation: ARROW_BODY_STYLE_CONSTANT,
|
||
range: 1,
|
||
minValue: 0.1
|
||
};
|
||
const arrowHeadData = {
|
||
widthArrow: 10,
|
||
lengthArrow: 5
|
||
};
|
||
//ARROW
|
||
|
||
//CIRCLE
|
||
const circleCenter = [20, 80];
|
||
const circleRadius = 120;
|
||
const circleDensity = 20;
|
||
//CORCLE
|
||
//ARROW
|
||
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
|
||
function cubicInterpolate(p, x) {
|
||
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
|
||
}
|
||
|
||
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
|
||
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
|
||
}
|
||
|
||
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
|
||
return 1 + (minValue - 1) * normalizedPosition / range ;
|
||
}
|
||
|
||
/**
|
||
* @param {Object} arrowData - Object with data for arrow
|
||
* @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path.
|
||
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
|
||
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
|
||
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
|
||
*
|
||
* @param {Object} style - Object with data for the calculation style.
|
||
* @param {number} style.calculation - The style for the calculation
|
||
* @param {number} style.range - The range for the calculation style.
|
||
* @param {number} style.minValue - The minimum value used in the calculation.
|
||
*
|
||
* @param {Object} arrowHeadData - Optional data for the arrowhead.
|
||
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
|
||
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
|
||
*
|
||
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
|
||
*/
|
||
export function getArrowPolygon(arrowData, style, arrowHeadData) {
|
||
if (!style)
|
||
style = {
|
||
calculation: ARROW_BODY_STYLE_CONSTANT,
|
||
range: 0,
|
||
minValue: 0
|
||
};
|
||
|
||
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
|
||
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
|
||
|
||
const end = splinePoints[splinePoints.length -1];
|
||
const bearing = averageBearing(splinePoints, 3);
|
||
const arrowHead= arrowHeadData
|
||
? createIsoscelesTriangleCoords(
|
||
turf.point(end),
|
||
arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing)
|
||
: [];
|
||
|
||
const polygonCoords = [
|
||
...leftSidePoints,
|
||
...arrowHead,
|
||
...rightSidePoints.reverse(),
|
||
leftSidePoints[0]
|
||
];
|
||
|
||
return turf.polygon([[...polygonCoords]]);
|
||
}
|
||
|
||
function averageBearing(points, count = 3) {
|
||
const bearings = [];
|
||
for (let i = points.length - count; i < points.length -1; i++) {
|
||
if (i >= 0) {
|
||
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
|
||
bearings.push(b);
|
||
}
|
||
}
|
||
|
||
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
|
||
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
|
||
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
|
||
}
|
||
|
||
function computeSplinePoints(points, splineStep = 10) {
|
||
if (points.length < 2) return points;
|
||
const result = [];
|
||
|
||
for (let i = 0; i < points.length - 1; i++) {
|
||
const p0 = points[i === 0 ? i : i - 1];
|
||
const p1 = points[i];
|
||
const p2 = points[i + 1];
|
||
const p3 = points[i + 2] || p2;
|
||
for (let j = 0; j < splineStep; j++) {
|
||
const t = j / splineStep;
|
||
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
|
||
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
|
||
result.push([lon, lat]);
|
||
}
|
||
}
|
||
|
||
result.push(points[points.length - 1]);
|
||
return result;
|
||
}
|
||
|
||
function computeSideOffsets(points, offsetMeters, style) {
|
||
let leftSidePoints = [];
|
||
let rightSidePoints = [];
|
||
const total = points.length - 1;
|
||
|
||
for (let i = 1; i < points.length; i++) {
|
||
const previousPoint = points[i - 1];
|
||
const currentPoint = points[i];
|
||
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
|
||
const normalizedPosition = i / total;
|
||
|
||
let localOffsetDistance;
|
||
switch (style.calculation) {
|
||
case ARROW_BODY_STYLE_LINEAR:
|
||
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
|
||
break;
|
||
case ARROW_BODY_STYLE_EXPONENTIAL:
|
||
localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
|
||
break;
|
||
case ARROW_BODY_STYLE_CONSTANT:
|
||
default:
|
||
localOffsetDistance = offsetMeters;
|
||
}
|
||
|
||
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
|
||
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
|
||
}
|
||
|
||
return { leftSidePoints, rightSidePoints };
|
||
}
|
||
|
||
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
|
||
const halfBase = baseLengthMeters / 2;
|
||
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
|
||
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
|
||
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
|
||
return [left, tip, right];
|
||
}
|
||
//ARROW
|
||
|
||
//CIRCLE
|
||
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
|
||
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
|
||
|
||
/**
|
||
* @param {Object} center - The center point of the circle.
|
||
* @param {number} center.x
|
||
* @param {number} center.y
|
||
* @param {number} radius - The radius of the circle.
|
||
* @param {number} density - The number of points used to approximate the circle.
|
||
*
|
||
* @returns {Object} GeoJSON Feature representing the circle polygon.
|
||
*/
|
||
export function getCirclePolygon(center, radius, density = 64) {
|
||
const points = [];
|
||
|
||
const coords = {
|
||
latitude: center[1], // Latitude
|
||
longitude: center[0] // Longitude
|
||
};
|
||
|
||
const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180));
|
||
const distanceY = radius / distancePerDegreeLatitude;
|
||
|
||
for (let i = 0; i < density; i++) {
|
||
const angle = (i / density) * Math.PI * 2;
|
||
const x = distanceX * Math.cos(angle);
|
||
const y = distanceY * Math.sin(angle);
|
||
points.push([coords.longitude + x, coords.latitude + y]);
|
||
}
|
||
|
||
// Close the circle by adding the first point again
|
||
points.push(points[0]);
|
||
|
||
return {
|
||
type: "Feature",
|
||
geometry: {
|
||
type: "Polygon",
|
||
coordinates: [points]
|
||
},
|
||
properties: {}
|
||
};
|
||
}
|
||
//CIRCLE
|
||
|
||
//RECTANGLE
|
||
/**
|
||
* @param {Object} center - The center point of the rectangle.
|
||
* @param {number} center.x
|
||
* @param {number} center.y
|
||
* @param {number} width - The length of the first side of the rectangle.
|
||
* @param {number} height - The length of the second side of the rectangle.
|
||
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
|
||
*
|
||
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
|
||
*/
|
||
export function getRectanglePolygon(center, width, height, rotation = 0) {
|
||
const widthMeters = width * 1000 ;
|
||
const heightMeters = height * 1000;
|
||
|
||
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
|
||
|
||
const halfWidth = widthMeters / 2;
|
||
const halfHeight = heightMeters / 2;
|
||
|
||
let corners = [
|
||
[centerMerc[0] - halfWidth, centerMerc[1] + halfHeight], // topLeft
|
||
[centerMerc[0] + halfWidth, centerMerc[1] + halfHeight], // topRight
|
||
[centerMerc[0] + halfWidth, centerMerc[1] - halfHeight], // bottomRight
|
||
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
|
||
];
|
||
|
||
if (rotation !== 0) {
|
||
const rad = (rotation * Math.PI) / 180;
|
||
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
|
||
}
|
||
|
||
corners.push(corners[0]);
|
||
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
|
||
|
||
return turf.polygon([wgsCoords]);
|
||
}
|
||
//RECTANGLE
|
||
|
||
//MAP GRID
|
||
function generateLatLonGrid(step = 10) {
|
||
const features = [];
|
||
|
||
for (let lat = -80; lat <= 80; lat += step) {
|
||
features.push({
|
||
type: "Feature",
|
||
geometry: {
|
||
type: "LineString",
|
||
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
|
||
}
|
||
});
|
||
}
|
||
|
||
for (let lon = -180; lon <= 180; lon += step) {
|
||
features.push({
|
||
type: "Feature",
|
||
geometry: {
|
||
type: "LineString",
|
||
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
|
||
}
|
||
});
|
||
}
|
||
|
||
return {
|
||
type: "FeatureCollection",
|
||
features
|
||
};
|
||
}
|
||
//MAP GRID
|