mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg'; const map = new mapboxgl.Map({ container: 'map', center: [10, 50], zoom: 5 }); import * as turf from "@turf/turf"; import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js"; map.on('load', () => { const points = [ [1.42076, 40.08804], [358.4050, 50.52] ]; const fullPolygon = getArrowPolygon(points, 20000); // offset 20 km map.addSource("arrow-shape", { type: "geojson", data: fullPolygon }); map.addLayer({ id: "arrow-shape", type: "fill", source: "arrow-shape", paint: { "fill-color": "#ff0000", "fill-opacity": 0.7 } }); const grid = generateLatLonGrid(10); map.addSource("latLonGrid", { type: "geojson", data: grid }); map.addLayer({ id: "latLonGrid", type: "line", source: "latLonGrid", paint: { "line-color": "#888", "line-width": 1, "line-opacity": 0.5 } }); // Obrys (černý) map.addLayer({ id: "arrow-outline", type: "line", source: "arrow-shape", paint: { "line-color": "#000000", "line-width": 2, "line-opacity": 1 } }); }); const points = [ { x: 70, y: 38 }, { x: 71, y: 45}, { x: 65, y: 50 }, { x: 70, y: 53} ]; const arrowData = { points: points, splineStep: 0.01, spacing: 0.01, offsetDistance: 10000 }; const style = { calculation: ARROW_BODY_STYLE_LINEAR, range: 1, minValue: 0.1 }; const arrowHeadData = { widthArrow: 1, lengthArrow: 1 }; // Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic function cubicInterpolate(p, x) { return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); } /** * @param {Object} arrowData - Object with data for arrow * @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path. * @param {number} arrowData.splineStep - The step size for the spline interpolation. * @param {number} arrowData.spacing - The spacing between the points along the arrow. * @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width). * * @param {Object} style - Object with data for the calculation style. * @param {number} style.calculation - The style for the calculation * @param {number} style.range - The range for the calculation style. * @param {number} style.minValue - The minimum value used in the calculation. * * @param {Object|undefined} arrowHeadData - Optional data for the arrowhead. * @param {number} arrowHeadData.widthArrow - The width of the arrowhead. * @param {number} arrowHeadData.lengthArrow - The length of the arrowhead. * * @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon. */ export function getArrowPolygon(arrowData, style= undefined, arrowHeadData = undefined) { const splineStep = 20; const smooth = computeSplinePoints(arrowData.points, splineStep); const { leftSidePoints, rightSidePoints } = computeSideOffsets(smooth, arrowData.offsetDistance); const end = smooth[smooth.length -1]; const bearing = averageBearing(smooth, 3); const triangle = createIsoscelesTriangleCoords(turf.point(end), arrowData.offsetDistance * 5, arrowData.offsetDistance * 5, bearing); const polygonCoords = [ ...leftSidePoints, ...triangle, ...rightSidePoints.reverse(), leftSidePoints[0] ]; return turf.polygon([[...polygonCoords]]); } function averageBearing(points, count = 3) { const bearings = []; for (let i = points.length - count; i < points.length -1; i++) { if (i >= 0) { const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1])); bearings.push(b); } } // Průměr s korekcí kruhového rozsahu const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0); const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0); return Math.atan2(sinSum, cosSum) * 180 / Math.PI; } function computeSplinePoints(points, segments = 10) { if (points.length < 2) return points; const result = []; for (let i = 0; i < points.length - 1; i++) { const p0 = points[i === 0 ? i : i - 1]; const p1 = points[i]; const p2 = points[i + 1]; const p3 = points[i + 2] || p2; for (let j = 0; j < segments; j++) { const t = j / segments; const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t); const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t); result.push([lon, lat]); } } result.push(points[points.length - 1]); return result; } function computeSideOffsets(points, offsetMeters) { let leftSidePoints = []; let rightSidePoints = []; for (let i = 1; i < points.length; i++) { const previousPoint = points[i - 1]; const currentPoint = points[i]; const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint)); leftSidePoints.push(turf.destination(turf.point(currentPoint), offsetMeters, bearing - 90, { units: 'meters' }).geometry.coordinates); rightSidePoints.push(turf.destination(turf.point(currentPoint), offsetMeters, bearing + 90, { units: 'meters' }).geometry.coordinates); } return { leftSidePoints, rightSidePoints }; } function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) { const halfBase = baseLengthMeters / 2; const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates; const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates; const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates; return [left, tip, right]; } function generateLatLonGrid(step = 10) { const features = []; for (let lat = -80; lat <= 80; lat += step) { features.push({ type: "Feature", geometry: { type: "LineString", coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat]) } }); } for (let lon = -180; lon <= 180; lon += step) { features.push({ type: "Feature", geometry: { type: "LineString", coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10]) } }); } return { type: "FeatureCollection", features }; }