import * as turf from "@turf/turf"; import { toMercator, toWgs84 } from '@turf/projection'; import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js"; mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg'; const map = new mapboxgl.Map({ container: 'map', center: [10, 50], zoom: 5 }); map.on('load', () => { const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData); const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity); const circle = turf.circle([20, 80], 120000, { units: "meters", steps: 64 }); // Circle created directly with the Turf library const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200); //ARROW map.addSource("arrow-shape", { type: "geojson", data: fullPolygon }); map.addLayer({ "id": "arrow-shape", "type": "fill", "source": "arrow-shape", "paint": { "fill-color": "#ff0000", "fill-opacity": 0.7 } }); map.addLayer({ "id": "arrow-outline", "type": "line", "source": "arrow-shape", "paint": { "line-color": "#000000", "line-width": 2, "line-opacity": 1 } }); //ARROW // CIRCLE map.addSource("circlePolygon", { "type": "geojson", "data": circleGeoJSON }); map.addLayer({ "id": "circlePolygon", "type": "fill", "source": "circlePolygon", "layout": {}, "paint": { "fill-color": "blue", "fill-opacity": 0.6 } }); map.addLayer({ "id": "circlePolygon-outline", "type": "line", "source": "circlePolygon", "paint": { "line-color": "#000000", "line-width": 2, "line-opacity": 1 } }); // CIRCLE // RECTANGLE map.addSource("rectanglePolygon", { "type": "geojson", "data": rectangleGeoJSON }); // Přidání vrstvy pro vykreslení polygonu map.addLayer({ "id": "rectanglePolygon", "type": "fill", "source": "rectanglePolygon", "layout": {}, "paint": { "fill-color": "red", "fill-opacity": 0.6 } }); // Přidání outline pro polygon map.addLayer({ "id": "rectanglePolygon-outline", "type": "line", "source": "rectanglePolygon", "paint": { "line-color": "#000", "line-width": 3 } }); // RECTANGLE //MAP GRID const grid = generateLatLonGrid(10); map.addSource("latLonGrid", { type: "geojson", data: grid }); map.addLayer({ id: "latLonGrid", type: "line", source: "latLonGrid", paint: { "line-color": "#888", "line-width": 1, "line-opacity": 0.5 } }); //MAP GRID }); //ARROW const points = [ [1.42076, 40.08804], [15.42076, 80.08804], [55.42076, 75.08804], [120.42076, 40.08804], [358.4050, 50.52] ]; const arrowData = { points: points, splineStep: 20, spacing: 0.01, offsetDistance: 20000 }; const style = { calculation: ARROW_BODY_STYLE_CONSTANT, range: 1, minValue: 0.1 }; const arrowHeadData = { widthArrow: 10, lengthArrow: 5 }; //ARROW //CIRCLE const circleCenter = [20, 80]; const circleRadius = 120; const circleDensity = 20; //CORCLE //ARROW // Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic function cubicInterpolate(p, x) { return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); } function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) { return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition); } function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) { return 1 + (minValue - 1) * normalizedPosition / range ; } /** * @param {Object} arrowData - Object with data for arrow * @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path. * @param {number} arrowData.splineStep - The step size for the spline interpolation. * @param {number} arrowData.spacing - The spacing between the points along the arrow. * @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width). * * @param {Object} style - Object with data for the calculation style. * @param {number} style.calculation - The style for the calculation * @param {number} style.range - The range for the calculation style. * @param {number} style.minValue - The minimum value used in the calculation. * * @param {Object} arrowHeadData - Optional data for the arrowhead. * @param {number} arrowHeadData.widthArrow - The width of the arrowhead. * @param {number} arrowHeadData.lengthArrow - The length of the arrowhead. * * @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon. */ export function getArrowPolygon(arrowData, style, arrowHeadData) { if (!style) style = { calculation: ARROW_BODY_STYLE_CONSTANT, range: 0, minValue: 0 }; const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep); const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style); const end = splinePoints[splinePoints.length -1]; const bearing = averageBearing(splinePoints, 3); const arrowHead= arrowHeadData ? createIsoscelesTriangleCoords( turf.point(end), arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing) : []; const polygonCoords = [ ...leftSidePoints, ...arrowHead, ...rightSidePoints.reverse(), leftSidePoints[0] ]; return turf.polygon([[...polygonCoords]]); } function averageBearing(points, count = 3) { const bearings = []; for (let i = points.length - count; i < points.length -1; i++) { if (i >= 0) { const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1])); bearings.push(b); } } const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0); const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0); return Math.atan2(sinSum, cosSum) * 180 / Math.PI; } function computeSplinePoints(points, splineStep = 10) { if (points.length < 2) return points; const result = []; for (let i = 0; i < points.length - 1; i++) { const p0 = points[i === 0 ? i : i - 1]; const p1 = points[i]; const p2 = points[i + 1]; const p3 = points[i + 2] || p2; for (let j = 0; j < splineStep; j++) { const t = j / splineStep; const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t); const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t); result.push([lon, lat]); } } result.push(points[points.length - 1]); return result; } function computeSideOffsets(points, offsetMeters, style) { let leftSidePoints = []; let rightSidePoints = []; const total = points.length - 1; for (let i = 1; i < points.length; i++) { const previousPoint = points[i - 1]; const currentPoint = points[i]; const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint)); const normalizedPosition = i / total; let localOffsetDistance; switch (style.calculation) { case ARROW_BODY_STYLE_LINEAR: localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue); break; case ARROW_BODY_STYLE_EXPONENTIAL: localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue); break; case ARROW_BODY_STYLE_CONSTANT: default: localOffsetDistance = offsetMeters; } leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates); rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates); } return { leftSidePoints, rightSidePoints }; } function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) { const halfBase = baseLengthMeters / 2; const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates; const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates; const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates; return [left, tip, right]; } //ARROW //CIRCLE const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360 const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360 /** * @param {Object} center - The center point of the circle. * @param {number} center.x * @param {number} center.y * @param {number} radius - The radius of the circle. * @param {number} density - The number of points used to approximate the circle. * * @returns {Object} GeoJSON Feature representing the circle polygon. */ export function getCirclePolygon(center, radius, density = 64) { const points = []; const coords = { latitude: center[1], // Latitude longitude: center[0] // Longitude }; const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180)); const distanceY = radius / distancePerDegreeLatitude; for (let i = 0; i < density; i++) { const angle = (i / density) * Math.PI * 2; const x = distanceX * Math.cos(angle); const y = distanceY * Math.sin(angle); points.push([coords.longitude + x, coords.latitude + y]); } // Close the circle by adding the first point again points.push(points[0]); return { type: "Feature", geometry: { type: "Polygon", coordinates: [points] }, properties: {} }; } //CIRCLE //RECTANGLE /** * @param {Object} center - The center point of the rectangle. * @param {number} center.x * @param {number} center.y * @param {number} width - The length of the first side of the rectangle. * @param {number} height - The length of the second side of the rectangle. * @param {number} rotation - The angle (in radians) by which to rotate the rectangle. * * @returns {Object} GeoJSON Feature representing the rectangle polygon. */ export function getRectanglePolygon(center, width, height, rotation = 0) { const widthMeters = width * 1000 ; const heightMeters = height * 1000; const centerMerc = toMercator(turf.point(center)).geometry.coordinates; const halfWidth = widthMeters / 2; const halfHeight = heightMeters / 2; let corners = [ [centerMerc[0] - halfWidth, centerMerc[1] + halfHeight], // topLeft [centerMerc[0] + halfWidth, centerMerc[1] + halfHeight], // topRight [centerMerc[0] + halfWidth, centerMerc[1] - halfHeight], // bottomRight [centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft ]; if (rotation !== 0) { const rad = (rotation * Math.PI) / 180; corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad)); } corners.push(corners[0]); const wgsCoords = corners.map(([x, y]) => toWgs84([x, y])); return turf.polygon([wgsCoords]); } //RECTANGLE //MAP GRID function generateLatLonGrid(step = 10) { const features = []; for (let lat = -80; lat <= 80; lat += step) { features.push({ type: "Feature", geometry: { type: "LineString", coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat]) } }); } for (let lon = -180; lon <= 180; lon += step) { features.push({ type: "Feature", geometry: { type: "LineString", coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10]) } }); } return { type: "FeatureCollection", features }; } //MAP GRID