Arrows, Circle finished

This commit is contained in:
Tomas Richtar 2025-05-28 17:45:01 +02:00
parent 2f18d2f06f
commit 3edc2570be
5 changed files with 418 additions and 546 deletions

232
Arrow.js
View File

@ -2,43 +2,144 @@ export const ARROW_BODY_STYLE_CONSTANT = 1;
export const ARROW_BODY_STYLE_LINEAR = 2;
export const ARROW_BODY_STYLE_EXPONENTIAL = 3;
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
import * as turf from "@turf/turf";
function round(value, decimals = 6) {
return Number(value.toFixed(decimals));
//ARROW
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
// Převod z lon/lat do Web Mercator (v metrech)
function lonLatToMeters(lon, lat) {
const originShift = 2 * Math.PI * 6378137 / 2.0;
const mx = lon * originShift / 180.0 ;
const my = Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0)* 150;
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
}
//console.log(JSON.stringify(mx, null, 2));
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
return 1 + (minValue - 1) * normalizedPosition / range ;
}
return {
x: mx,
y: my * originShift / 180.0
//GEOJSON
/**
* @param {Object} arrowData - Object with data for arrow
* @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
*
* @param {Object} style - Object with data for the calculation style.
* @param {number} style.calculation - The style for the calculation
* @param {number} style.range - The range for the calculation style.
* @param {number} style.minValue - The minimum value used in the calculation.
*
* @param {Object} arrowHeadData - Optional data for the arrowhead.
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
*
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(arrowData, style, arrowHeadData) {
if (!style)
style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 0,
minValue: 0
};
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
const end = splinePoints[splinePoints.length -1];
const bearing = averageBearing(splinePoints, 3);
const arrowHead= arrowHeadData
? createIsoscelesTriangleCoords(
turf.point(end),
arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing)
: [];
const polygonCoords = [
...leftSidePoints,
...arrowHead,
...rightSidePoints.reverse(),
leftSidePoints[0]
];
return turf.polygon([[...polygonCoords]]);
}
// Převod z Web Mercator zpět do lon/lat
function metersToLonLat(mx, my) {
const originShift = 2 * Math.PI * 6378137 / 2.0;
const lon = (mx / originShift) * 180.0;
const lat = 180 / Math.PI * (2 * Math.atan(Math.exp(my / originShift * Math.PI / 180.0)) - Math.PI / 2);
return {
lon: round(lon, 6),
lat: round(lat, 6)
};
function averageBearing(points, count = 3) {
const bearings = [];
for (let i = points.length - count; i < points.length -1; i++) {
if (i >= 0) {
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
bearings.push(b);
}
}
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
}
function computeSplinePoints(points, splineStep = 10) {
if (points.length < 2) return points;
const result = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
const p1 = points[i];
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let j = 0; j < splineStep; j++) {
const t = j / splineStep;
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
result.push([lon, lat]);
}
}
result.push(points[points.length - 1]);
return result;
}
function computeSideOffsets(points, offsetMeters, style) {
let leftSidePoints = [];
let rightSidePoints = [];
const total = points.length - 1;
for (let i = 1; i < points.length; i++) {
const previousPoint = points[i - 1];
const currentPoint = points[i];
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
const normalizedPosition = i / total;
let localOffsetDistance;
switch (style.calculation) {
case ARROW_BODY_STYLE_LINEAR:
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_EXPONENTIAL:
localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_CONSTANT:
default:
localOffsetDistance = offsetMeters;
}
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
}
return { leftSidePoints, rightSidePoints };
}
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
return [left, tip, right];
}
//GEOJSON
//CANVAS
/**
* @param {Object} arrowData - Object with data for arrow
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
@ -57,7 +158,7 @@ function metersToLonLat(mx, my) {
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(
export function getArrowPolygonEuclidean(
arrowData,
style= undefined,
arrowHeadData = undefined) {
@ -69,17 +170,16 @@ export function getArrowPolygon(
minValue: 0
};
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, arrowData.spacing, arrowData.offsetDistance, style);
const splinePoints = computeSplinePointsEuclidean(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSidesEuclidean(splinePoints, arrowData.spacing, arrowData.offsetDistance, style);
const arrowHead= arrowHeadData
? createIsoscelesTriangleFromSpline(splinePoints, arrowHeadData.widthArrow, arrowHeadData.lengthArrow)
? computeArrowHeadEuclidean(splinePoints, arrowHeadData.widthArrow, arrowHeadData.lengthArrow)
: [];
const fullPolygon = [...leftSidePoints, ...arrowHead.reverse(), ...rightSidePoints.reverse()];
return fullPolygon;
return [...leftSidePoints, ...arrowHead.reverse(), ...rightSidePoints.reverse()];
}
function computeSplinePoints(points, splineStep) {
function computeSplinePointsEuclidean(points, splineStep) {
let splinePoints = [];
for (let i = 0; i < points.length - 1; i++) {
@ -94,11 +194,11 @@ function computeSplinePoints(points, splineStep) {
});
}
}
splinePoints.x /100;
return splinePoints;
}
function computeSides(splinePoints, spacing, offsetDistance, style) {
function computeSidesEuclidean(splinePoints, spacing, offsetDistance, style) {
let leftSidePoints = [];
let rightSidePoints = [];
@ -112,17 +212,8 @@ function computeSides(splinePoints, spacing, offsetDistance, style) {
accumulatedDistance += segmentLength;
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
let distanceX;
let distanceY;
if (i == 1 || i == splinePoints.length-1)
{
distanceX = (currentPoint.y - previousPoint.y);
distanceY = (previousPoint.x - currentPoint.x);
}else
{
distanceX = (currentPoint.y - previousPoint.y) ;
distanceY = (previousPoint.x - currentPoint.x) ;
}
const distanceX = currentPoint.y - previousPoint.y;
const distanceY = previousPoint.x - currentPoint.x;
const length = Math.hypot(distanceX, distanceY);
const normalizedPosition = i / (splinePoints.length - 1);
@ -152,58 +243,21 @@ function computeSides(splinePoints, spacing, offsetDistance, style) {
return { leftSidePoints, rightSidePoints };
}
function createIsoscelesTriangleFromSpline(splinePoints, baseLengthMeters, heightMeters) {
if (splinePoints.length < 2) {
throw new Error("Potřeba alespoň dva body ve splinePoints");
}
const last = splinePoints[splinePoints.length - 1];
const prev = splinePoints[splinePoints.length - 2];
// Vektor směru (bearing)
const dx = last.x - prev.x;
const dy = last.y - prev.y;
const bearing = (Math.atan2(dx, dy) * 180 / Math.PI + 360) % 360;
const center = [last.x, last.y]; // GeoJSON formát: [lon, lat]
const halfBase = baseLengthMeters / 2*100000;
const leftBase = turf.destination(center, halfBase, bearing - 90, { units: 'meters' });
const rightBase = turf.destination(center, halfBase, bearing + 90, { units: 'meters' });
const apex = turf.destination(center, heightMeters*100000, bearing, { units: 'meters' });
return [
{ x: leftBase.geometry.coordinates[0], y: leftBase.geometry.coordinates[1] },
{ x: apex.geometry.coordinates[0], y: apex.geometry.coordinates[1] },
{ x: rightBase.geometry.coordinates[0], y: rightBase.geometry.coordinates[1] }
];
}
function computeArrowHead(splinePoints, width, length) {
function computeArrowHeadEuclidean(splinePoints, width, length) {
const len = splinePoints.length;
const lastPoint = splinePoints[len - 1];
const secondLastPoint = splinePoints[len - 2];
//const x = (lastPoint.x - secondLastPoint.x);
//const y = (lastPoint.y - secondLastPoint.y);
const x = (lastPoint.x - secondLastPoint.x) ;
const y = (lastPoint.y - secondLastPoint.y) ;
const x = lastPoint.x - secondLastPoint.x;
const y = lastPoint.y - secondLastPoint.y;
const magnitude = Math.hypot(x, y);
const normalizedX = x / magnitude;
const normalizedY = y / magnitude;
return [
{ x: lastPoint.x - normalizedY * width, y: lastPoint.y + normalizedX * width },
{ x: (lastPoint.x + normalizedX) * length, y: (lastPoint.y + normalizedY) * length},
{ x: lastPoint.x + normalizedX * length, y: lastPoint.y + normalizedY * length },
{ x: lastPoint.x + normalizedY * width, y: lastPoint.y - normalizedX * width },
];
}
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
}
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
return 1 + (minValue - 1) * normalizedPosition / range ;
}
//CANVAS
//ARROW

View File

@ -1,9 +1,11 @@
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
import * as turf from "@turf/turf";
import { toMercator, toWgs84 } from '@turf/projection';
//CIRCLE
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
//GEOJSON
/**
* @param {Object} center - The center point of the circle.
* @param {number} center.x
@ -11,7 +13,7 @@ import { toMercator, toWgs84 } from '@turf/projection';
* @param {number} radius - The radius of the circle.
* @param {number} density - The number of points used to approximate the circle.
*
* @returns {Object} GeoJSON Feature representing the circle polygon.
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the circle polygon.
*/
export function getCirclePolygon(center, radius, density = 64) {
const points = [];
@ -34,38 +36,58 @@ export function getCirclePolygon(center, radius, density = 64) {
// Close the circle by adding the first point again
points.push(points[0]);
return turf.polygon([[...points]]);
return {
type: "Feature",
geometry: {
type: "Polygon",
coordinates: [points]
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [points]
},
properties: {}
"properties": {}
};
}
function getDistancePerDegreeLongitude(latitude) {
return 111.320 * Math.cos(latitude * Math.PI / 180);
//GEOJSON
//CANVAS
/**
* @param {Object} center - The center point of the circle.
* @param {number} center.x
* @param {number} center.y
* @param {number} radius - The radius of the circle.
* @param {number} density - The number of points used to approximate the circle.
*
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the circle polygon.
*/
export function getCirclePolygonEuclidean(center, radius, density) {
const points = [];
for (let i = 0; i < density; i++) {
const angle = (i / density) * Math.PI * 2;
const x = center.x + radius * Math.cos(angle);
const y = center.y + radius * Math.sin(angle);
points.push({ x, y });
}
return points;
}
//CANVAS
//CIRCLE
//RECTANGLE
//GEOJSON
/**
* @param {Object} center - The center point of the rectangle.
* @param {number} center.x
* @param {number} center.y
* @param {number} sideA - The length of the first side of the rectangle.
* @param {number} sideB - The length of the second side of the rectangle.
* @param {number} width - The length of the first side of the rectangle.
* @param {number} height - The length of the second side of the rectangle.
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
*
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the rectangle polygon.
*/
export function getRectanglePolygon(center, width, height, rotation = 0) {
const widthMeters = width * 1000 ;
const heightMeters = height * 1000;
// 1. Střed převedeme do metrického systému (Web Mercator)
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
// 2. Vypočítáme rohy čtverce v metrech
const halfWidth = widthMeters / 2;
const halfHeight = heightMeters / 2;
@ -76,13 +98,11 @@ export function getRectanglePolygon(center, width, height, rotation = 0) {
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
];
// 3. Otočení (volitelně)
if (rotation !== 0) {
const rad = (rotation * Math.PI) / 180;
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
}
// 4. Uzavřeme polygon a převedeme zpět do WGS84
corners.push(corners[0]);
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
@ -98,40 +118,35 @@ function rotateXY(x, y, cx, cy, angleRad) {
const ry = cy + dx * sin + dy * cos;
return [rx, ry];
}
/*
const [lon, lat] = center;
//GEOJSON
//CANVAS
/**
* @param {Object} center - The center point of the rectangle.
* @param {number} center.x
* @param {number} center.y
* @param {number} sideA - The length of the first side of the rectangle.
* @param {number} sideB - The length of the second side of the rectangle.
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
*
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the rectangle polygon.
*/
export function getRectanglePolygonEuclidean(center, sideA, sideB, rotation) {
const halfA = sideA / 2;
const halfB = sideB / 2;
// Přepočet metrů na stupně:
const degLat = height / distancePerDegreeLatitude / 2;
const degLon = width / (distancePerDegreeLongitude * Math.cos(lat * Math.PI / 180)) / 2;
// Rohy bez rotace (v relative souřadnicích)
const corners = [
[-degLon, -degLat],
[ degLon, -degLat],
[ degLon, degLat],
[-degLon, degLat]
{ x: -halfA, y: -halfB },
{ x: halfA, y: -halfB },
{ x: halfA, y: halfB },
{ x: -halfA, y: halfB }
];
// Rotace a posun
const rotated = corners.map(([dx, dy]) => {
const x = dx;
const y = dy;
const rotatedX = x * Math.cos(rotation) - y * Math.sin(rotation);
const rotatedY = x * Math.sin(rotation) + y * Math.cos(rotation);
return [lon + rotatedX, lat + rotatedY];
});
// Uzavření polygonu
rotated.push(rotated[0]);
return corners.map(point => {
return {
type: "Feature",
geometry: {
type: "Polygon",
coordinates: [rotated]
},
properties: {}
};*/
x: center.x + point.x * Math.cos(rotation) - point.y * Math.sin(rotation),
y: center.y + point.x * Math.sin(rotation) + point.y * Math.cos(rotation)
};
});
}
//CAVNAS
//RECTANGLE

View File

@ -1,395 +0,0 @@
import * as turf from "@turf/turf";
import { toMercator, toWgs84 } from '@turf/projection';
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
const map = new mapboxgl.Map({
container: 'map',
center: [10, 50],
zoom: 5
});
map.on('load', () => {
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
const circle = turf.circle([20, 80], 120000, { units: "meters", steps: 64 }); // Circle created directly with the Turf library
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
//ARROW
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
map.addLayer({
"id": "arrow-shape",
"type": "fill",
"source": "arrow-shape",
"paint": {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
map.addLayer({
"id": "arrow-outline",
"type": "line",
"source": "arrow-shape",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
//ARROW
// CIRCLE
map.addSource("circlePolygon", {
"type": "geojson",
"data": circleGeoJSON
});
map.addLayer({
"id": "circlePolygon",
"type": "fill",
"source": "circlePolygon",
"layout": {},
"paint": {
"fill-color": "blue",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "circlePolygon-outline",
"type": "line",
"source": "circlePolygon",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
// CIRCLE
// RECTANGLE
map.addSource("rectanglePolygon", {
"type": "geojson",
"data": rectangleGeoJSON
});
// Přidání vrstvy pro vykreslení polygonu
map.addLayer({
"id": "rectanglePolygon",
"type": "fill",
"source": "rectanglePolygon",
"layout": {},
"paint": {
"fill-color": "red",
"fill-opacity": 0.6
}
});
// Přidání outline pro polygon
map.addLayer({
"id": "rectanglePolygon-outline",
"type": "line",
"source": "rectanglePolygon",
"paint": {
"line-color": "#000",
"line-width": 3
}
});
// RECTANGLE
//MAP GRID
const grid = generateLatLonGrid(10);
map.addSource("latLonGrid", { type: "geojson", data: grid });
map.addLayer({
id: "latLonGrid",
type: "line",
source: "latLonGrid",
paint: {
"line-color": "#888",
"line-width": 1,
"line-opacity": 0.5
}
});
//MAP GRID
});
//ARROW
const points = [
[1.42076, 40.08804],
[15.42076, 80.08804],
[55.42076, 75.08804],
[120.42076, 40.08804],
[358.4050, 50.52]
];
const arrowData = {
points: points,
splineStep: 20,
spacing: 0.01,
offsetDistance: 20000
};
const style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 1,
minValue: 0.1
};
const arrowHeadData = {
widthArrow: 10,
lengthArrow: 5
};
//ARROW
//CIRCLE
const circleCenter = [20, 80];
const circleRadius = 120;
const circleDensity = 20;
//CORCLE
//ARROW
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
}
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
return 1 + (minValue - 1) * normalizedPosition / range ;
}
/**
* @param {Object} arrowData - Object with data for arrow
* @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
*
* @param {Object} style - Object with data for the calculation style.
* @param {number} style.calculation - The style for the calculation
* @param {number} style.range - The range for the calculation style.
* @param {number} style.minValue - The minimum value used in the calculation.
*
* @param {Object} arrowHeadData - Optional data for the arrowhead.
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(arrowData, style, arrowHeadData) {
if (!style)
style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 0,
minValue: 0
};
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
const end = splinePoints[splinePoints.length -1];
const bearing = averageBearing(splinePoints, 3);
const arrowHead= arrowHeadData
? createIsoscelesTriangleCoords(
turf.point(end),
arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing)
: [];
const polygonCoords = [
...leftSidePoints,
...arrowHead,
...rightSidePoints.reverse(),
leftSidePoints[0]
];
return turf.polygon([[...polygonCoords]]);
}
function averageBearing(points, count = 3) {
const bearings = [];
for (let i = points.length - count; i < points.length -1; i++) {
if (i >= 0) {
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
bearings.push(b);
}
}
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
}
function computeSplinePoints(points, splineStep = 10) {
if (points.length < 2) return points;
const result = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
const p1 = points[i];
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let j = 0; j < splineStep; j++) {
const t = j / splineStep;
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
result.push([lon, lat]);
}
}
result.push(points[points.length - 1]);
return result;
}
function computeSideOffsets(points, offsetMeters, style) {
let leftSidePoints = [];
let rightSidePoints = [];
const total = points.length - 1;
for (let i = 1; i < points.length; i++) {
const previousPoint = points[i - 1];
const currentPoint = points[i];
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
const normalizedPosition = i / total;
let localOffsetDistance;
switch (style.calculation) {
case ARROW_BODY_STYLE_LINEAR:
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_EXPONENTIAL:
localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_CONSTANT:
default:
localOffsetDistance = offsetMeters;
}
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
}
return { leftSidePoints, rightSidePoints };
}
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
return [left, tip, right];
}
//ARROW
//CIRCLE
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
/**
* @param {Object} center - The center point of the circle.
* @param {number} center.x
* @param {number} center.y
* @param {number} radius - The radius of the circle.
* @param {number} density - The number of points used to approximate the circle.
*
* @returns {Object} GeoJSON Feature representing the circle polygon.
*/
export function getCirclePolygon(center, radius, density = 64) {
const points = [];
const coords = {
latitude: center[1], // Latitude
longitude: center[0] // Longitude
};
const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180));
const distanceY = radius / distancePerDegreeLatitude;
for (let i = 0; i < density; i++) {
const angle = (i / density) * Math.PI * 2;
const x = distanceX * Math.cos(angle);
const y = distanceY * Math.sin(angle);
points.push([coords.longitude + x, coords.latitude + y]);
}
// Close the circle by adding the first point again
points.push(points[0]);
return {
type: "Feature",
geometry: {
type: "Polygon",
coordinates: [points]
},
properties: {}
};
}
//CIRCLE
//RECTANGLE
/**
* @param {Object} center - The center point of the rectangle.
* @param {number} center.x
* @param {number} center.y
* @param {number} width - The length of the first side of the rectangle.
* @param {number} height - The length of the second side of the rectangle.
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
*
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
*/
export function getRectanglePolygon(center, width, height, rotation = 0) {
const widthMeters = width * 1000 ;
const heightMeters = height * 1000;
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
const halfWidth = widthMeters / 2;
const halfHeight = heightMeters / 2;
let corners = [
[centerMerc[0] - halfWidth, centerMerc[1] + halfHeight], // topLeft
[centerMerc[0] + halfWidth, centerMerc[1] + halfHeight], // topRight
[centerMerc[0] + halfWidth, centerMerc[1] - halfHeight], // bottomRight
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
];
if (rotation !== 0) {
const rad = (rotation * Math.PI) / 180;
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
}
corners.push(corners[0]);
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
return turf.polygon([wgsCoords]);
}
//RECTANGLE
//MAP GRID
function generateLatLonGrid(step = 10) {
const features = [];
for (let lat = -80; lat <= 80; lat += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
}
});
}
for (let lon = -180; lon <= 180; lon += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
}
});
}
return {
type: "FeatureCollection",
features
};
}
//MAP GRID

199
MapPolygons.js Normal file
View File

@ -0,0 +1,199 @@
import { getArrowPolygon } from "athena-utils/shape/Arrow.js";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "athena-utils/shape/Arrow.js";
import { getCirclePolygon } from "athena-utils/shape/BasicShapes.js";
import { getRectanglePolygon } from "athena-utils/shape/BasicShapes.js";
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
const map = new mapboxgl.Map({
container: 'map',
center: [10, 50],
zoom: 5
});
map.on('load', () => {
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
const rectangleBGeoJSON = getRectanglePolygon([20, 20], 2200, 2200);
//ARROW
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
map.addLayer({
"id": "arrow-shape",
"type": "fill",
"source": "arrow-shape",
"paint": {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
map.addLayer({
"id": "arrow-outline",
"type": "line",
"source": "arrow-shape",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
//ARROW
// CIRCLE
map.addSource("circlePolygon", {
"type": "geojson",
"data": circleGeoJSON
});
map.addLayer({
"id": "circlePolygon",
"type": "fill",
"source": "circlePolygon",
"layout": {},
"paint": {
"fill-color": "blue",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "circlePolygon-outline",
"type": "line",
"source": "circlePolygon",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
// CIRCLE
// RECTANGLE
map.addSource("rectanglePolygon", {
"type": "geojson",
"data": rectangleGeoJSON
});
map.addLayer({
"id": "rectanglePolygon",
"type": "fill",
"source": "rectanglePolygon",
"layout": {},
"paint": {
"fill-color": "red",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "rectanglePolygon-outline",
"type": "line",
"source": "rectanglePolygon",
"paint": {
"line-color": "#000",
"line-width": 3
}
});
map.addSource("rectangleBPolygon", {
"type": "geojson",
"data": rectangleBGeoJSON
});
map.addLayer({
"id": "rectangleBPolygon",
"type": "fill",
"source": "rectangleBPolygon",
"layout": {},
"paint": {
"fill-color": "red",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "rectangleBPolygon-outline",
"type": "line",
"source": "rectangleBPolygon",
"paint": {
"line-color": "#000",
"line-width": 3
}
});
// RECTANGLE
//MAP GRID
const grid = generateLatLonGrid(10);
map.addSource("latLonGrid", { type: "geojson", data: grid });
map.addLayer({
"id": "latLonGrid",
"type": "line",
"source": "latLonGrid",
"paint": {
"line-color": "#888",
"line-width": 1,
"line-opacity": 0.5
}
});
//MAP GRID
});
//ARROW
const points = [
[1.42076, 40.08804],
[15.42076, 80.08804],
[55.42076, 75.08804],
[120.42076, 40.08804],
[358.4050, 50.52]
];
const arrowData = {
points: points,
splineStep: 20,
offsetDistance: 20000
};
const style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 1,
minValue: 0.1
};
const arrowHeadData = {
widthArrow: 10,
lengthArrow: 5
};
//ARROW
//CIRCLE
const circleCenter = [20, 80];
const circleRadius = 120;
const circleDensity = 20;
//CORCLE
//MAP GRID
function generateLatLonGrid(step = 10) {
const features = [];
for (let lat = -80; lat <= 80; lat += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
}
});
}
for (let lon = -180; lon <= 180; lon += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
}
});
}
return {
type: "FeatureCollection",
features
};
}
//MAP GRID

View File

@ -13,7 +13,6 @@ body { margin: 0; padding: 0; }
</head>
<body>
<div id="map"></div>
<script type="module" src="MapArrow.js"></script>
<script type="module" src="MapPolygons.js"></script>
</body>
</html>