Arrows, Circle finished
This commit is contained in:
parent
2f18d2f06f
commit
3edc2570be
246
Arrow.js
246
Arrow.js
@ -2,43 +2,144 @@ export const ARROW_BODY_STYLE_CONSTANT = 1;
|
|||||||
export const ARROW_BODY_STYLE_LINEAR = 2;
|
export const ARROW_BODY_STYLE_LINEAR = 2;
|
||||||
export const ARROW_BODY_STYLE_EXPONENTIAL = 3;
|
export const ARROW_BODY_STYLE_EXPONENTIAL = 3;
|
||||||
|
|
||||||
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
|
|
||||||
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
|
|
||||||
|
|
||||||
import * as turf from "@turf/turf";
|
import * as turf from "@turf/turf";
|
||||||
|
|
||||||
|
//ARROW
|
||||||
|
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
|
||||||
function round(value, decimals = 6) {
|
function cubicInterpolate(p, x) {
|
||||||
return Number(value.toFixed(decimals));
|
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Převod z lon/lat do Web Mercator (v metrech)
|
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
|
||||||
function lonLatToMeters(lon, lat) {
|
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
|
||||||
const originShift = 2 * Math.PI * 6378137 / 2.0;
|
|
||||||
const mx = lon * originShift / 180.0 ;
|
|
||||||
const my = Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0)* 150;
|
|
||||||
|
|
||||||
//console.log(JSON.stringify(mx, null, 2));
|
|
||||||
|
|
||||||
return {
|
|
||||||
x: mx,
|
|
||||||
y: my * originShift / 180.0
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Převod z Web Mercator zpět do lon/lat
|
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
|
||||||
function metersToLonLat(mx, my) {
|
return 1 + (minValue - 1) * normalizedPosition / range ;
|
||||||
const originShift = 2 * Math.PI * 6378137 / 2.0;
|
|
||||||
const lon = (mx / originShift) * 180.0;
|
|
||||||
const lat = 180 / Math.PI * (2 * Math.atan(Math.exp(my / originShift * Math.PI / 180.0)) - Math.PI / 2);
|
|
||||||
|
|
||||||
return {
|
|
||||||
lon: round(lon, 6),
|
|
||||||
lat: round(lat, 6)
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//GEOJSON
|
||||||
|
/**
|
||||||
|
* @param {Object} arrowData - Object with data for arrow
|
||||||
|
* @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path.
|
||||||
|
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
|
||||||
|
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
|
||||||
|
*
|
||||||
|
* @param {Object} style - Object with data for the calculation style.
|
||||||
|
* @param {number} style.calculation - The style for the calculation
|
||||||
|
* @param {number} style.range - The range for the calculation style.
|
||||||
|
* @param {number} style.minValue - The minimum value used in the calculation.
|
||||||
|
*
|
||||||
|
* @param {Object} arrowHeadData - Optional data for the arrowhead.
|
||||||
|
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
|
||||||
|
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
|
||||||
|
*
|
||||||
|
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} - An array of points representing the arrow polygon.
|
||||||
|
*/
|
||||||
|
export function getArrowPolygon(arrowData, style, arrowHeadData) {
|
||||||
|
if (!style)
|
||||||
|
style = {
|
||||||
|
calculation: ARROW_BODY_STYLE_CONSTANT,
|
||||||
|
range: 0,
|
||||||
|
minValue: 0
|
||||||
|
};
|
||||||
|
|
||||||
|
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
|
||||||
|
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
|
||||||
|
|
||||||
|
const end = splinePoints[splinePoints.length -1];
|
||||||
|
const bearing = averageBearing(splinePoints, 3);
|
||||||
|
const arrowHead= arrowHeadData
|
||||||
|
? createIsoscelesTriangleCoords(
|
||||||
|
turf.point(end),
|
||||||
|
arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing)
|
||||||
|
: [];
|
||||||
|
|
||||||
|
const polygonCoords = [
|
||||||
|
...leftSidePoints,
|
||||||
|
...arrowHead,
|
||||||
|
...rightSidePoints.reverse(),
|
||||||
|
leftSidePoints[0]
|
||||||
|
];
|
||||||
|
|
||||||
|
return turf.polygon([[...polygonCoords]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
function averageBearing(points, count = 3) {
|
||||||
|
const bearings = [];
|
||||||
|
for (let i = points.length - count; i < points.length -1; i++) {
|
||||||
|
if (i >= 0) {
|
||||||
|
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
|
||||||
|
bearings.push(b);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
|
||||||
|
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
|
||||||
|
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
|
||||||
|
}
|
||||||
|
|
||||||
|
function computeSplinePoints(points, splineStep = 10) {
|
||||||
|
if (points.length < 2) return points;
|
||||||
|
const result = [];
|
||||||
|
|
||||||
|
for (let i = 0; i < points.length - 1; i++) {
|
||||||
|
const p0 = points[i === 0 ? i : i - 1];
|
||||||
|
const p1 = points[i];
|
||||||
|
const p2 = points[i + 1];
|
||||||
|
const p3 = points[i + 2] || p2;
|
||||||
|
for (let j = 0; j < splineStep; j++) {
|
||||||
|
const t = j / splineStep;
|
||||||
|
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
|
||||||
|
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
|
||||||
|
result.push([lon, lat]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
result.push(points[points.length - 1]);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
function computeSideOffsets(points, offsetMeters, style) {
|
||||||
|
let leftSidePoints = [];
|
||||||
|
let rightSidePoints = [];
|
||||||
|
const total = points.length - 1;
|
||||||
|
|
||||||
|
for (let i = 1; i < points.length; i++) {
|
||||||
|
const previousPoint = points[i - 1];
|
||||||
|
const currentPoint = points[i];
|
||||||
|
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
|
||||||
|
const normalizedPosition = i / total;
|
||||||
|
|
||||||
|
let localOffsetDistance;
|
||||||
|
switch (style.calculation) {
|
||||||
|
case ARROW_BODY_STYLE_LINEAR:
|
||||||
|
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
|
||||||
|
break;
|
||||||
|
case ARROW_BODY_STYLE_EXPONENTIAL:
|
||||||
|
localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
|
||||||
|
break;
|
||||||
|
case ARROW_BODY_STYLE_CONSTANT:
|
||||||
|
default:
|
||||||
|
localOffsetDistance = offsetMeters;
|
||||||
|
}
|
||||||
|
|
||||||
|
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
|
||||||
|
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
|
||||||
|
}
|
||||||
|
|
||||||
|
return { leftSidePoints, rightSidePoints };
|
||||||
|
}
|
||||||
|
|
||||||
|
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
|
||||||
|
const halfBase = baseLengthMeters / 2;
|
||||||
|
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
|
||||||
|
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
|
||||||
|
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
|
||||||
|
return [left, tip, right];
|
||||||
|
}
|
||||||
|
//GEOJSON
|
||||||
|
//CANVAS
|
||||||
/**
|
/**
|
||||||
* @param {Object} arrowData - Object with data for arrow
|
* @param {Object} arrowData - Object with data for arrow
|
||||||
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
|
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
|
||||||
@ -57,7 +158,7 @@ function metersToLonLat(mx, my) {
|
|||||||
*
|
*
|
||||||
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
|
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
|
||||||
*/
|
*/
|
||||||
export function getArrowPolygon(
|
export function getArrowPolygonEuclidean(
|
||||||
arrowData,
|
arrowData,
|
||||||
style= undefined,
|
style= undefined,
|
||||||
arrowHeadData = undefined) {
|
arrowHeadData = undefined) {
|
||||||
@ -69,17 +170,16 @@ export function getArrowPolygon(
|
|||||||
minValue: 0
|
minValue: 0
|
||||||
};
|
};
|
||||||
|
|
||||||
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
|
const splinePoints = computeSplinePointsEuclidean(arrowData.points, arrowData.splineStep);
|
||||||
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, arrowData.spacing, arrowData.offsetDistance, style);
|
const { leftSidePoints, rightSidePoints } = computeSidesEuclidean(splinePoints, arrowData.spacing, arrowData.offsetDistance, style);
|
||||||
const arrowHead= arrowHeadData
|
const arrowHead= arrowHeadData
|
||||||
? createIsoscelesTriangleFromSpline(splinePoints, arrowHeadData.widthArrow, arrowHeadData.lengthArrow)
|
? computeArrowHeadEuclidean(splinePoints, arrowHeadData.widthArrow, arrowHeadData.lengthArrow)
|
||||||
: [];
|
: [];
|
||||||
|
|
||||||
const fullPolygon = [...leftSidePoints, ...arrowHead.reverse(), ...rightSidePoints.reverse()];
|
return [...leftSidePoints, ...arrowHead.reverse(), ...rightSidePoints.reverse()];
|
||||||
return fullPolygon;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
function computeSplinePoints(points, splineStep) {
|
function computeSplinePointsEuclidean(points, splineStep) {
|
||||||
let splinePoints = [];
|
let splinePoints = [];
|
||||||
|
|
||||||
for (let i = 0; i < points.length - 1; i++) {
|
for (let i = 0; i < points.length - 1; i++) {
|
||||||
@ -94,11 +194,11 @@ function computeSplinePoints(points, splineStep) {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
splinePoints.x /100;
|
|
||||||
return splinePoints;
|
return splinePoints;
|
||||||
}
|
}
|
||||||
|
|
||||||
function computeSides(splinePoints, spacing, offsetDistance, style) {
|
function computeSidesEuclidean(splinePoints, spacing, offsetDistance, style) {
|
||||||
|
|
||||||
let leftSidePoints = [];
|
let leftSidePoints = [];
|
||||||
let rightSidePoints = [];
|
let rightSidePoints = [];
|
||||||
@ -112,17 +212,8 @@ function computeSides(splinePoints, spacing, offsetDistance, style) {
|
|||||||
accumulatedDistance += segmentLength;
|
accumulatedDistance += segmentLength;
|
||||||
|
|
||||||
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
|
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
|
||||||
let distanceX;
|
const distanceX = currentPoint.y - previousPoint.y;
|
||||||
let distanceY;
|
const distanceY = previousPoint.x - currentPoint.x;
|
||||||
if (i == 1 || i == splinePoints.length-1)
|
|
||||||
{
|
|
||||||
distanceX = (currentPoint.y - previousPoint.y);
|
|
||||||
distanceY = (previousPoint.x - currentPoint.x);
|
|
||||||
}else
|
|
||||||
{
|
|
||||||
distanceX = (currentPoint.y - previousPoint.y) ;
|
|
||||||
distanceY = (previousPoint.x - currentPoint.x) ;
|
|
||||||
}
|
|
||||||
const length = Math.hypot(distanceX, distanceY);
|
const length = Math.hypot(distanceX, distanceY);
|
||||||
const normalizedPosition = i / (splinePoints.length - 1);
|
const normalizedPosition = i / (splinePoints.length - 1);
|
||||||
|
|
||||||
@ -144,66 +235,29 @@ function computeSides(splinePoints, spacing, offsetDistance, style) {
|
|||||||
const offsetY = (distanceY / length) * localOffsetDistance;
|
const offsetY = (distanceY / length) * localOffsetDistance;
|
||||||
|
|
||||||
accumulatedDistance = 0;
|
accumulatedDistance = 0;
|
||||||
leftSidePoints.push({ x: currentPoint.x + offsetX , y: currentPoint.y + offsetY });
|
leftSidePoints.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY });
|
||||||
rightSidePoints.push({ x: currentPoint.x - offsetX , y: currentPoint.y - offsetY });
|
rightSidePoints.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY });
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return { leftSidePoints, rightSidePoints };
|
return { leftSidePoints, rightSidePoints };
|
||||||
}
|
}
|
||||||
|
|
||||||
function createIsoscelesTriangleFromSpline(splinePoints, baseLengthMeters, heightMeters) {
|
function computeArrowHeadEuclidean(splinePoints, width, length) {
|
||||||
if (splinePoints.length < 2) {
|
|
||||||
throw new Error("Potřeba alespoň dva body ve splinePoints");
|
|
||||||
}
|
|
||||||
|
|
||||||
const last = splinePoints[splinePoints.length - 1];
|
|
||||||
const prev = splinePoints[splinePoints.length - 2];
|
|
||||||
|
|
||||||
// Vektor směru (bearing)
|
|
||||||
const dx = last.x - prev.x;
|
|
||||||
const dy = last.y - prev.y;
|
|
||||||
const bearing = (Math.atan2(dx, dy) * 180 / Math.PI + 360) % 360;
|
|
||||||
|
|
||||||
const center = [last.x, last.y]; // GeoJSON formát: [lon, lat]
|
|
||||||
|
|
||||||
const halfBase = baseLengthMeters / 2*100000;
|
|
||||||
|
|
||||||
const leftBase = turf.destination(center, halfBase, bearing - 90, { units: 'meters' });
|
|
||||||
const rightBase = turf.destination(center, halfBase, bearing + 90, { units: 'meters' });
|
|
||||||
const apex = turf.destination(center, heightMeters*100000, bearing, { units: 'meters' });
|
|
||||||
|
|
||||||
return [
|
|
||||||
{ x: leftBase.geometry.coordinates[0], y: leftBase.geometry.coordinates[1] },
|
|
||||||
{ x: apex.geometry.coordinates[0], y: apex.geometry.coordinates[1] },
|
|
||||||
{ x: rightBase.geometry.coordinates[0], y: rightBase.geometry.coordinates[1] }
|
|
||||||
];
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function computeArrowHead(splinePoints, width, length) {
|
|
||||||
const len = splinePoints.length;
|
const len = splinePoints.length;
|
||||||
const lastPoint = splinePoints[len - 1];
|
const lastPoint = splinePoints[len - 1];
|
||||||
const secondLastPoint = splinePoints[len - 2];
|
const secondLastPoint = splinePoints[len - 2];
|
||||||
//const x = (lastPoint.x - secondLastPoint.x);
|
const x = lastPoint.x - secondLastPoint.x;
|
||||||
//const y = (lastPoint.y - secondLastPoint.y);
|
const y = lastPoint.y - secondLastPoint.y;
|
||||||
const x = (lastPoint.x - secondLastPoint.x) ;
|
|
||||||
const y = (lastPoint.y - secondLastPoint.y) ;
|
|
||||||
const magnitude = Math.hypot(x, y);
|
const magnitude = Math.hypot(x, y);
|
||||||
const normalizedX = x / magnitude;
|
const normalizedX = x / magnitude;
|
||||||
const normalizedY = y / magnitude;
|
const normalizedY = y / magnitude;
|
||||||
|
|
||||||
return [
|
return [
|
||||||
{ x: lastPoint.x - normalizedY * width , y: lastPoint.y + normalizedX * width},
|
{ x: lastPoint.x - normalizedY * width, y: lastPoint.y + normalizedX * width },
|
||||||
{ x: (lastPoint.x + normalizedX) * length, y: (lastPoint.y + normalizedY) * length},
|
{ x: lastPoint.x + normalizedX * length, y: lastPoint.y + normalizedY * length },
|
||||||
{ x: lastPoint.x + normalizedY * width , y: lastPoint.y - normalizedX * width},
|
{ x: lastPoint.x + normalizedY * width, y: lastPoint.y - normalizedX * width },
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
//CANVAS
|
||||||
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
|
//ARROW
|
||||||
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
|
|
||||||
}
|
|
||||||
|
|
||||||
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
|
|
||||||
return 1 + (minValue - 1) * normalizedPosition / range ;
|
|
||||||
}
|
|
||||||
|
|||||||
121
BasicShapes.js
121
BasicShapes.js
@ -1,9 +1,11 @@
|
|||||||
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
|
|
||||||
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
|
|
||||||
|
|
||||||
import * as turf from "@turf/turf";
|
import * as turf from "@turf/turf";
|
||||||
import { toMercator, toWgs84 } from '@turf/projection';
|
import { toMercator, toWgs84 } from '@turf/projection';
|
||||||
|
|
||||||
|
//CIRCLE
|
||||||
|
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
|
||||||
|
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
|
||||||
|
|
||||||
|
//GEOJSON
|
||||||
/**
|
/**
|
||||||
* @param {Object} center - The center point of the circle.
|
* @param {Object} center - The center point of the circle.
|
||||||
* @param {number} center.x
|
* @param {number} center.x
|
||||||
@ -11,7 +13,7 @@ import { toMercator, toWgs84 } from '@turf/projection';
|
|||||||
* @param {number} radius - The radius of the circle.
|
* @param {number} radius - The radius of the circle.
|
||||||
* @param {number} density - The number of points used to approximate the circle.
|
* @param {number} density - The number of points used to approximate the circle.
|
||||||
*
|
*
|
||||||
* @returns {Object} GeoJSON Feature representing the circle polygon.
|
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the circle polygon.
|
||||||
*/
|
*/
|
||||||
export function getCirclePolygon(center, radius, density = 64) {
|
export function getCirclePolygon(center, radius, density = 64) {
|
||||||
const points = [];
|
const points = [];
|
||||||
@ -34,38 +36,58 @@ export function getCirclePolygon(center, radius, density = 64) {
|
|||||||
// Close the circle by adding the first point again
|
// Close the circle by adding the first point again
|
||||||
points.push(points[0]);
|
points.push(points[0]);
|
||||||
|
|
||||||
|
return turf.polygon([[...points]]);
|
||||||
return {
|
return {
|
||||||
type: "Feature",
|
"type": "Feature",
|
||||||
geometry: {
|
"geometry": {
|
||||||
type: "Polygon",
|
"type": "Polygon",
|
||||||
coordinates: [points]
|
"coordinates": [points]
|
||||||
},
|
},
|
||||||
properties: {}
|
"properties": {}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
//GEOJSON
|
||||||
function getDistancePerDegreeLongitude(latitude) {
|
//CANVAS
|
||||||
return 111.320 * Math.cos(latitude * Math.PI / 180);
|
/**
|
||||||
|
* @param {Object} center - The center point of the circle.
|
||||||
|
* @param {number} center.x
|
||||||
|
* @param {number} center.y
|
||||||
|
* @param {number} radius - The radius of the circle.
|
||||||
|
* @param {number} density - The number of points used to approximate the circle.
|
||||||
|
*
|
||||||
|
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the circle polygon.
|
||||||
|
*/
|
||||||
|
export function getCirclePolygonEuclidean(center, radius, density) {
|
||||||
|
const points = [];
|
||||||
|
for (let i = 0; i < density; i++) {
|
||||||
|
const angle = (i / density) * Math.PI * 2;
|
||||||
|
const x = center.x + radius * Math.cos(angle);
|
||||||
|
const y = center.y + radius * Math.sin(angle);
|
||||||
|
points.push({ x, y });
|
||||||
|
}
|
||||||
|
return points;
|
||||||
}
|
}
|
||||||
|
//CANVAS
|
||||||
|
//CIRCLE
|
||||||
|
|
||||||
|
//RECTANGLE
|
||||||
|
//GEOJSON
|
||||||
/**
|
/**
|
||||||
* @param {Object} center - The center point of the rectangle.
|
* @param {Object} center - The center point of the rectangle.
|
||||||
* @param {number} center.x
|
* @param {number} center.x
|
||||||
* @param {number} center.y
|
* @param {number} center.y
|
||||||
* @param {number} sideA - The length of the first side of the rectangle.
|
* @param {number} width - The length of the first side of the rectangle.
|
||||||
* @param {number} sideB - The length of the second side of the rectangle.
|
* @param {number} height - The length of the second side of the rectangle.
|
||||||
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
|
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
|
||||||
*
|
*
|
||||||
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
|
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the rectangle polygon.
|
||||||
*/
|
*/
|
||||||
export function getRectanglePolygon(center, width, height, rotation = 0) {
|
export function getRectanglePolygon(center, width, height, rotation = 0) {
|
||||||
const widthMeters = width * 1000 ;
|
const widthMeters = width * 1000 ;
|
||||||
const heightMeters = height * 1000;
|
const heightMeters = height * 1000;
|
||||||
|
|
||||||
// 1. Střed převedeme do metrického systému (Web Mercator)
|
|
||||||
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
|
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
|
||||||
|
|
||||||
// 2. Vypočítáme rohy čtverce v metrech
|
|
||||||
const halfWidth = widthMeters / 2;
|
const halfWidth = widthMeters / 2;
|
||||||
const halfHeight = heightMeters / 2;
|
const halfHeight = heightMeters / 2;
|
||||||
|
|
||||||
@ -76,13 +98,11 @@ export function getRectanglePolygon(center, width, height, rotation = 0) {
|
|||||||
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
|
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
|
||||||
];
|
];
|
||||||
|
|
||||||
// 3. Otočení (volitelně)
|
|
||||||
if (rotation !== 0) {
|
if (rotation !== 0) {
|
||||||
const rad = (rotation * Math.PI) / 180;
|
const rad = (rotation * Math.PI) / 180;
|
||||||
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
|
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
|
||||||
}
|
}
|
||||||
|
|
||||||
// 4. Uzavřeme polygon a převedeme zpět do WGS84
|
|
||||||
corners.push(corners[0]);
|
corners.push(corners[0]);
|
||||||
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
|
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
|
||||||
|
|
||||||
@ -98,40 +118,35 @@ function rotateXY(x, y, cx, cy, angleRad) {
|
|||||||
const ry = cy + dx * sin + dy * cos;
|
const ry = cy + dx * sin + dy * cos;
|
||||||
return [rx, ry];
|
return [rx, ry];
|
||||||
}
|
}
|
||||||
/*
|
//GEOJSON
|
||||||
const [lon, lat] = center;
|
//CANVAS
|
||||||
|
/**
|
||||||
// Přepočet metrů na stupně:
|
* @param {Object} center - The center point of the rectangle.
|
||||||
const degLat = height / distancePerDegreeLatitude / 2;
|
* @param {number} center.x
|
||||||
const degLon = width / (distancePerDegreeLongitude * Math.cos(lat * Math.PI / 180)) / 2;
|
* @param {number} center.y
|
||||||
|
* @param {number} sideA - The length of the first side of the rectangle.
|
||||||
// Rohy bez rotace (v relative souřadnicích)
|
* @param {number} sideB - The length of the second side of the rectangle.
|
||||||
|
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
|
||||||
|
*
|
||||||
|
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the rectangle polygon.
|
||||||
|
*/
|
||||||
|
export function getRectanglePolygonEuclidean(center, sideA, sideB, rotation) {
|
||||||
|
const halfA = sideA / 2;
|
||||||
|
const halfB = sideB / 2;
|
||||||
|
|
||||||
const corners = [
|
const corners = [
|
||||||
[-degLon, -degLat],
|
{ x: -halfA, y: -halfB },
|
||||||
[ degLon, -degLat],
|
{ x: halfA, y: -halfB },
|
||||||
[ degLon, degLat],
|
{ x: halfA, y: halfB },
|
||||||
[-degLon, degLat]
|
{ x: -halfA, y: halfB }
|
||||||
];
|
];
|
||||||
|
|
||||||
// Rotace a posun
|
return corners.map(point => {
|
||||||
const rotated = corners.map(([dx, dy]) => {
|
return {
|
||||||
const x = dx;
|
x: center.x + point.x * Math.cos(rotation) - point.y * Math.sin(rotation),
|
||||||
const y = dy;
|
y: center.y + point.x * Math.sin(rotation) + point.y * Math.cos(rotation)
|
||||||
|
};
|
||||||
const rotatedX = x * Math.cos(rotation) - y * Math.sin(rotation);
|
|
||||||
const rotatedY = x * Math.sin(rotation) + y * Math.cos(rotation);
|
|
||||||
|
|
||||||
return [lon + rotatedX, lat + rotatedY];
|
|
||||||
});
|
});
|
||||||
|
}
|
||||||
// Uzavření polygonu
|
//CAVNAS
|
||||||
rotated.push(rotated[0]);
|
//RECTANGLE
|
||||||
|
|
||||||
return {
|
|
||||||
type: "Feature",
|
|
||||||
geometry: {
|
|
||||||
type: "Polygon",
|
|
||||||
coordinates: [rotated]
|
|
||||||
},
|
|
||||||
properties: {}
|
|
||||||
};*/
|
|
||||||
395
MapArrow.js
395
MapArrow.js
@ -1,395 +0,0 @@
|
|||||||
import * as turf from "@turf/turf";
|
|
||||||
import { toMercator, toWgs84 } from '@turf/projection';
|
|
||||||
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
|
|
||||||
|
|
||||||
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
|
|
||||||
const map = new mapboxgl.Map({
|
|
||||||
container: 'map',
|
|
||||||
center: [10, 50],
|
|
||||||
zoom: 5
|
|
||||||
});
|
|
||||||
|
|
||||||
|
|
||||||
map.on('load', () => {
|
|
||||||
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
|
|
||||||
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
|
|
||||||
const circle = turf.circle([20, 80], 120000, { units: "meters", steps: 64 }); // Circle created directly with the Turf library
|
|
||||||
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
|
|
||||||
|
|
||||||
//ARROW
|
|
||||||
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
|
|
||||||
map.addLayer({
|
|
||||||
"id": "arrow-shape",
|
|
||||||
"type": "fill",
|
|
||||||
"source": "arrow-shape",
|
|
||||||
"paint": {
|
|
||||||
"fill-color": "#ff0000",
|
|
||||||
"fill-opacity": 0.7
|
|
||||||
}
|
|
||||||
});
|
|
||||||
map.addLayer({
|
|
||||||
"id": "arrow-outline",
|
|
||||||
"type": "line",
|
|
||||||
"source": "arrow-shape",
|
|
||||||
"paint": {
|
|
||||||
"line-color": "#000000",
|
|
||||||
"line-width": 2,
|
|
||||||
"line-opacity": 1
|
|
||||||
}
|
|
||||||
});
|
|
||||||
//ARROW
|
|
||||||
|
|
||||||
// CIRCLE
|
|
||||||
map.addSource("circlePolygon", {
|
|
||||||
"type": "geojson",
|
|
||||||
"data": circleGeoJSON
|
|
||||||
});
|
|
||||||
|
|
||||||
map.addLayer({
|
|
||||||
"id": "circlePolygon",
|
|
||||||
"type": "fill",
|
|
||||||
"source": "circlePolygon",
|
|
||||||
"layout": {},
|
|
||||||
"paint": {
|
|
||||||
"fill-color": "blue",
|
|
||||||
"fill-opacity": 0.6
|
|
||||||
}
|
|
||||||
});
|
|
||||||
map.addLayer({
|
|
||||||
"id": "circlePolygon-outline",
|
|
||||||
"type": "line",
|
|
||||||
"source": "circlePolygon",
|
|
||||||
"paint": {
|
|
||||||
"line-color": "#000000",
|
|
||||||
"line-width": 2,
|
|
||||||
"line-opacity": 1
|
|
||||||
}
|
|
||||||
});
|
|
||||||
// CIRCLE
|
|
||||||
|
|
||||||
// RECTANGLE
|
|
||||||
map.addSource("rectanglePolygon", {
|
|
||||||
"type": "geojson",
|
|
||||||
"data": rectangleGeoJSON
|
|
||||||
});
|
|
||||||
|
|
||||||
// Přidání vrstvy pro vykreslení polygonu
|
|
||||||
map.addLayer({
|
|
||||||
"id": "rectanglePolygon",
|
|
||||||
"type": "fill",
|
|
||||||
"source": "rectanglePolygon",
|
|
||||||
"layout": {},
|
|
||||||
"paint": {
|
|
||||||
"fill-color": "red",
|
|
||||||
"fill-opacity": 0.6
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
// Přidání outline pro polygon
|
|
||||||
map.addLayer({
|
|
||||||
"id": "rectanglePolygon-outline",
|
|
||||||
"type": "line",
|
|
||||||
"source": "rectanglePolygon",
|
|
||||||
"paint": {
|
|
||||||
"line-color": "#000",
|
|
||||||
"line-width": 3
|
|
||||||
}
|
|
||||||
});
|
|
||||||
// RECTANGLE
|
|
||||||
|
|
||||||
//MAP GRID
|
|
||||||
const grid = generateLatLonGrid(10);
|
|
||||||
map.addSource("latLonGrid", { type: "geojson", data: grid });
|
|
||||||
map.addLayer({
|
|
||||||
id: "latLonGrid",
|
|
||||||
type: "line",
|
|
||||||
source: "latLonGrid",
|
|
||||||
paint: {
|
|
||||||
"line-color": "#888",
|
|
||||||
"line-width": 1,
|
|
||||||
"line-opacity": 0.5
|
|
||||||
}
|
|
||||||
});
|
|
||||||
//MAP GRID
|
|
||||||
});
|
|
||||||
|
|
||||||
//ARROW
|
|
||||||
const points = [
|
|
||||||
[1.42076, 40.08804],
|
|
||||||
[15.42076, 80.08804],
|
|
||||||
[55.42076, 75.08804],
|
|
||||||
[120.42076, 40.08804],
|
|
||||||
[358.4050, 50.52]
|
|
||||||
];
|
|
||||||
const arrowData = {
|
|
||||||
points: points,
|
|
||||||
splineStep: 20,
|
|
||||||
spacing: 0.01,
|
|
||||||
offsetDistance: 20000
|
|
||||||
};
|
|
||||||
const style = {
|
|
||||||
calculation: ARROW_BODY_STYLE_CONSTANT,
|
|
||||||
range: 1,
|
|
||||||
minValue: 0.1
|
|
||||||
};
|
|
||||||
const arrowHeadData = {
|
|
||||||
widthArrow: 10,
|
|
||||||
lengthArrow: 5
|
|
||||||
};
|
|
||||||
//ARROW
|
|
||||||
|
|
||||||
//CIRCLE
|
|
||||||
const circleCenter = [20, 80];
|
|
||||||
const circleRadius = 120;
|
|
||||||
const circleDensity = 20;
|
|
||||||
//CORCLE
|
|
||||||
//ARROW
|
|
||||||
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
|
|
||||||
function cubicInterpolate(p, x) {
|
|
||||||
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
|
|
||||||
}
|
|
||||||
|
|
||||||
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
|
|
||||||
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
|
|
||||||
}
|
|
||||||
|
|
||||||
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
|
|
||||||
return 1 + (minValue - 1) * normalizedPosition / range ;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @param {Object} arrowData - Object with data for arrow
|
|
||||||
* @param {Array<[number, number]>} arrowData.points - List of points defining the arrow's path.
|
|
||||||
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
|
|
||||||
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
|
|
||||||
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
|
|
||||||
*
|
|
||||||
* @param {Object} style - Object with data for the calculation style.
|
|
||||||
* @param {number} style.calculation - The style for the calculation
|
|
||||||
* @param {number} style.range - The range for the calculation style.
|
|
||||||
* @param {number} style.minValue - The minimum value used in the calculation.
|
|
||||||
*
|
|
||||||
* @param {Object} arrowHeadData - Optional data for the arrowhead.
|
|
||||||
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
|
|
||||||
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
|
|
||||||
*
|
|
||||||
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
|
|
||||||
*/
|
|
||||||
export function getArrowPolygon(arrowData, style, arrowHeadData) {
|
|
||||||
if (!style)
|
|
||||||
style = {
|
|
||||||
calculation: ARROW_BODY_STYLE_CONSTANT,
|
|
||||||
range: 0,
|
|
||||||
minValue: 0
|
|
||||||
};
|
|
||||||
|
|
||||||
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
|
|
||||||
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
|
|
||||||
|
|
||||||
const end = splinePoints[splinePoints.length -1];
|
|
||||||
const bearing = averageBearing(splinePoints, 3);
|
|
||||||
const arrowHead= arrowHeadData
|
|
||||||
? createIsoscelesTriangleCoords(
|
|
||||||
turf.point(end),
|
|
||||||
arrowData.offsetDistance * arrowHeadData.widthArrow, arrowData.offsetDistance * arrowHeadData.lengthArrow, bearing)
|
|
||||||
: [];
|
|
||||||
|
|
||||||
const polygonCoords = [
|
|
||||||
...leftSidePoints,
|
|
||||||
...arrowHead,
|
|
||||||
...rightSidePoints.reverse(),
|
|
||||||
leftSidePoints[0]
|
|
||||||
];
|
|
||||||
|
|
||||||
return turf.polygon([[...polygonCoords]]);
|
|
||||||
}
|
|
||||||
|
|
||||||
function averageBearing(points, count = 3) {
|
|
||||||
const bearings = [];
|
|
||||||
for (let i = points.length - count; i < points.length -1; i++) {
|
|
||||||
if (i >= 0) {
|
|
||||||
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
|
|
||||||
bearings.push(b);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
|
|
||||||
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
|
|
||||||
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
|
|
||||||
}
|
|
||||||
|
|
||||||
function computeSplinePoints(points, splineStep = 10) {
|
|
||||||
if (points.length < 2) return points;
|
|
||||||
const result = [];
|
|
||||||
|
|
||||||
for (let i = 0; i < points.length - 1; i++) {
|
|
||||||
const p0 = points[i === 0 ? i : i - 1];
|
|
||||||
const p1 = points[i];
|
|
||||||
const p2 = points[i + 1];
|
|
||||||
const p3 = points[i + 2] || p2;
|
|
||||||
for (let j = 0; j < splineStep; j++) {
|
|
||||||
const t = j / splineStep;
|
|
||||||
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
|
|
||||||
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
|
|
||||||
result.push([lon, lat]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
result.push(points[points.length - 1]);
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
function computeSideOffsets(points, offsetMeters, style) {
|
|
||||||
let leftSidePoints = [];
|
|
||||||
let rightSidePoints = [];
|
|
||||||
const total = points.length - 1;
|
|
||||||
|
|
||||||
for (let i = 1; i < points.length; i++) {
|
|
||||||
const previousPoint = points[i - 1];
|
|
||||||
const currentPoint = points[i];
|
|
||||||
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
|
|
||||||
const normalizedPosition = i / total;
|
|
||||||
|
|
||||||
let localOffsetDistance;
|
|
||||||
switch (style.calculation) {
|
|
||||||
case ARROW_BODY_STYLE_LINEAR:
|
|
||||||
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
|
|
||||||
break;
|
|
||||||
case ARROW_BODY_STYLE_EXPONENTIAL:
|
|
||||||
localOffsetDistance = offsetMeters * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
|
|
||||||
break;
|
|
||||||
case ARROW_BODY_STYLE_CONSTANT:
|
|
||||||
default:
|
|
||||||
localOffsetDistance = offsetMeters;
|
|
||||||
}
|
|
||||||
|
|
||||||
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
|
|
||||||
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
|
|
||||||
}
|
|
||||||
|
|
||||||
return { leftSidePoints, rightSidePoints };
|
|
||||||
}
|
|
||||||
|
|
||||||
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
|
|
||||||
const halfBase = baseLengthMeters / 2;
|
|
||||||
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
|
|
||||||
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
|
|
||||||
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
|
|
||||||
return [left, tip, right];
|
|
||||||
}
|
|
||||||
//ARROW
|
|
||||||
|
|
||||||
//CIRCLE
|
|
||||||
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
|
|
||||||
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @param {Object} center - The center point of the circle.
|
|
||||||
* @param {number} center.x
|
|
||||||
* @param {number} center.y
|
|
||||||
* @param {number} radius - The radius of the circle.
|
|
||||||
* @param {number} density - The number of points used to approximate the circle.
|
|
||||||
*
|
|
||||||
* @returns {Object} GeoJSON Feature representing the circle polygon.
|
|
||||||
*/
|
|
||||||
export function getCirclePolygon(center, radius, density = 64) {
|
|
||||||
const points = [];
|
|
||||||
|
|
||||||
const coords = {
|
|
||||||
latitude: center[1], // Latitude
|
|
||||||
longitude: center[0] // Longitude
|
|
||||||
};
|
|
||||||
|
|
||||||
const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180));
|
|
||||||
const distanceY = radius / distancePerDegreeLatitude;
|
|
||||||
|
|
||||||
for (let i = 0; i < density; i++) {
|
|
||||||
const angle = (i / density) * Math.PI * 2;
|
|
||||||
const x = distanceX * Math.cos(angle);
|
|
||||||
const y = distanceY * Math.sin(angle);
|
|
||||||
points.push([coords.longitude + x, coords.latitude + y]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Close the circle by adding the first point again
|
|
||||||
points.push(points[0]);
|
|
||||||
|
|
||||||
return {
|
|
||||||
type: "Feature",
|
|
||||||
geometry: {
|
|
||||||
type: "Polygon",
|
|
||||||
coordinates: [points]
|
|
||||||
},
|
|
||||||
properties: {}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
//CIRCLE
|
|
||||||
|
|
||||||
//RECTANGLE
|
|
||||||
/**
|
|
||||||
* @param {Object} center - The center point of the rectangle.
|
|
||||||
* @param {number} center.x
|
|
||||||
* @param {number} center.y
|
|
||||||
* @param {number} width - The length of the first side of the rectangle.
|
|
||||||
* @param {number} height - The length of the second side of the rectangle.
|
|
||||||
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
|
|
||||||
*
|
|
||||||
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
|
|
||||||
*/
|
|
||||||
export function getRectanglePolygon(center, width, height, rotation = 0) {
|
|
||||||
const widthMeters = width * 1000 ;
|
|
||||||
const heightMeters = height * 1000;
|
|
||||||
|
|
||||||
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
|
|
||||||
|
|
||||||
const halfWidth = widthMeters / 2;
|
|
||||||
const halfHeight = heightMeters / 2;
|
|
||||||
|
|
||||||
let corners = [
|
|
||||||
[centerMerc[0] - halfWidth, centerMerc[1] + halfHeight], // topLeft
|
|
||||||
[centerMerc[0] + halfWidth, centerMerc[1] + halfHeight], // topRight
|
|
||||||
[centerMerc[0] + halfWidth, centerMerc[1] - halfHeight], // bottomRight
|
|
||||||
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
|
|
||||||
];
|
|
||||||
|
|
||||||
if (rotation !== 0) {
|
|
||||||
const rad = (rotation * Math.PI) / 180;
|
|
||||||
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
|
|
||||||
}
|
|
||||||
|
|
||||||
corners.push(corners[0]);
|
|
||||||
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
|
|
||||||
|
|
||||||
return turf.polygon([wgsCoords]);
|
|
||||||
}
|
|
||||||
//RECTANGLE
|
|
||||||
|
|
||||||
//MAP GRID
|
|
||||||
function generateLatLonGrid(step = 10) {
|
|
||||||
const features = [];
|
|
||||||
|
|
||||||
for (let lat = -80; lat <= 80; lat += step) {
|
|
||||||
features.push({
|
|
||||||
type: "Feature",
|
|
||||||
geometry: {
|
|
||||||
type: "LineString",
|
|
||||||
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
for (let lon = -180; lon <= 180; lon += step) {
|
|
||||||
features.push({
|
|
||||||
type: "Feature",
|
|
||||||
geometry: {
|
|
||||||
type: "LineString",
|
|
||||||
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
|
|
||||||
}
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
return {
|
|
||||||
type: "FeatureCollection",
|
|
||||||
features
|
|
||||||
};
|
|
||||||
}
|
|
||||||
//MAP GRID
|
|
||||||
199
MapPolygons.js
Normal file
199
MapPolygons.js
Normal file
@ -0,0 +1,199 @@
|
|||||||
|
import { getArrowPolygon } from "athena-utils/shape/Arrow.js";
|
||||||
|
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "athena-utils/shape/Arrow.js";
|
||||||
|
import { getCirclePolygon } from "athena-utils/shape/BasicShapes.js";
|
||||||
|
import { getRectanglePolygon } from "athena-utils/shape/BasicShapes.js";
|
||||||
|
|
||||||
|
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
|
||||||
|
const map = new mapboxgl.Map({
|
||||||
|
container: 'map',
|
||||||
|
center: [10, 50],
|
||||||
|
zoom: 5
|
||||||
|
});
|
||||||
|
|
||||||
|
map.on('load', () => {
|
||||||
|
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
|
||||||
|
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
|
||||||
|
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
|
||||||
|
const rectangleBGeoJSON = getRectanglePolygon([20, 20], 2200, 2200);
|
||||||
|
|
||||||
|
//ARROW
|
||||||
|
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
|
||||||
|
map.addLayer({
|
||||||
|
"id": "arrow-shape",
|
||||||
|
"type": "fill",
|
||||||
|
"source": "arrow-shape",
|
||||||
|
"paint": {
|
||||||
|
"fill-color": "#ff0000",
|
||||||
|
"fill-opacity": 0.7
|
||||||
|
}
|
||||||
|
});
|
||||||
|
map.addLayer({
|
||||||
|
"id": "arrow-outline",
|
||||||
|
"type": "line",
|
||||||
|
"source": "arrow-shape",
|
||||||
|
"paint": {
|
||||||
|
"line-color": "#000000",
|
||||||
|
"line-width": 2,
|
||||||
|
"line-opacity": 1
|
||||||
|
}
|
||||||
|
});
|
||||||
|
//ARROW
|
||||||
|
|
||||||
|
// CIRCLE
|
||||||
|
map.addSource("circlePolygon", {
|
||||||
|
"type": "geojson",
|
||||||
|
"data": circleGeoJSON
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addLayer({
|
||||||
|
"id": "circlePolygon",
|
||||||
|
"type": "fill",
|
||||||
|
"source": "circlePolygon",
|
||||||
|
"layout": {},
|
||||||
|
"paint": {
|
||||||
|
"fill-color": "blue",
|
||||||
|
"fill-opacity": 0.6
|
||||||
|
}
|
||||||
|
});
|
||||||
|
map.addLayer({
|
||||||
|
"id": "circlePolygon-outline",
|
||||||
|
"type": "line",
|
||||||
|
"source": "circlePolygon",
|
||||||
|
"paint": {
|
||||||
|
"line-color": "#000000",
|
||||||
|
"line-width": 2,
|
||||||
|
"line-opacity": 1
|
||||||
|
}
|
||||||
|
});
|
||||||
|
// CIRCLE
|
||||||
|
|
||||||
|
// RECTANGLE
|
||||||
|
map.addSource("rectanglePolygon", {
|
||||||
|
"type": "geojson",
|
||||||
|
"data": rectangleGeoJSON
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addLayer({
|
||||||
|
"id": "rectanglePolygon",
|
||||||
|
"type": "fill",
|
||||||
|
"source": "rectanglePolygon",
|
||||||
|
"layout": {},
|
||||||
|
"paint": {
|
||||||
|
"fill-color": "red",
|
||||||
|
"fill-opacity": 0.6
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addLayer({
|
||||||
|
"id": "rectanglePolygon-outline",
|
||||||
|
"type": "line",
|
||||||
|
"source": "rectanglePolygon",
|
||||||
|
"paint": {
|
||||||
|
"line-color": "#000",
|
||||||
|
"line-width": 3
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addSource("rectangleBPolygon", {
|
||||||
|
"type": "geojson",
|
||||||
|
"data": rectangleBGeoJSON
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addLayer({
|
||||||
|
"id": "rectangleBPolygon",
|
||||||
|
"type": "fill",
|
||||||
|
"source": "rectangleBPolygon",
|
||||||
|
"layout": {},
|
||||||
|
"paint": {
|
||||||
|
"fill-color": "red",
|
||||||
|
"fill-opacity": 0.6
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
map.addLayer({
|
||||||
|
"id": "rectangleBPolygon-outline",
|
||||||
|
"type": "line",
|
||||||
|
"source": "rectangleBPolygon",
|
||||||
|
"paint": {
|
||||||
|
"line-color": "#000",
|
||||||
|
"line-width": 3
|
||||||
|
}
|
||||||
|
});
|
||||||
|
// RECTANGLE
|
||||||
|
|
||||||
|
//MAP GRID
|
||||||
|
const grid = generateLatLonGrid(10);
|
||||||
|
map.addSource("latLonGrid", { type: "geojson", data: grid });
|
||||||
|
map.addLayer({
|
||||||
|
"id": "latLonGrid",
|
||||||
|
"type": "line",
|
||||||
|
"source": "latLonGrid",
|
||||||
|
"paint": {
|
||||||
|
"line-color": "#888",
|
||||||
|
"line-width": 1,
|
||||||
|
"line-opacity": 0.5
|
||||||
|
}
|
||||||
|
});
|
||||||
|
//MAP GRID
|
||||||
|
});
|
||||||
|
|
||||||
|
//ARROW
|
||||||
|
const points = [
|
||||||
|
[1.42076, 40.08804],
|
||||||
|
[15.42076, 80.08804],
|
||||||
|
[55.42076, 75.08804],
|
||||||
|
[120.42076, 40.08804],
|
||||||
|
[358.4050, 50.52]
|
||||||
|
];
|
||||||
|
const arrowData = {
|
||||||
|
points: points,
|
||||||
|
splineStep: 20,
|
||||||
|
offsetDistance: 20000
|
||||||
|
};
|
||||||
|
const style = {
|
||||||
|
calculation: ARROW_BODY_STYLE_CONSTANT,
|
||||||
|
range: 1,
|
||||||
|
minValue: 0.1
|
||||||
|
};
|
||||||
|
const arrowHeadData = {
|
||||||
|
widthArrow: 10,
|
||||||
|
lengthArrow: 5
|
||||||
|
};
|
||||||
|
//ARROW
|
||||||
|
|
||||||
|
//CIRCLE
|
||||||
|
const circleCenter = [20, 80];
|
||||||
|
const circleRadius = 120;
|
||||||
|
const circleDensity = 20;
|
||||||
|
//CORCLE
|
||||||
|
|
||||||
|
//MAP GRID
|
||||||
|
function generateLatLonGrid(step = 10) {
|
||||||
|
const features = [];
|
||||||
|
|
||||||
|
for (let lat = -80; lat <= 80; lat += step) {
|
||||||
|
features.push({
|
||||||
|
type: "Feature",
|
||||||
|
geometry: {
|
||||||
|
type: "LineString",
|
||||||
|
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
for (let lon = -180; lon <= 180; lon += step) {
|
||||||
|
features.push({
|
||||||
|
type: "Feature",
|
||||||
|
geometry: {
|
||||||
|
type: "LineString",
|
||||||
|
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
type: "FeatureCollection",
|
||||||
|
features
|
||||||
|
};
|
||||||
|
}
|
||||||
|
//MAP GRID
|
||||||
@ -13,7 +13,6 @@ body { margin: 0; padding: 0; }
|
|||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<div id="map"></div>
|
<div id="map"></div>
|
||||||
<script type="module" src="MapArrow.js"></script>
|
<script type="module" src="MapPolygons.js"></script>
|
||||||
|
|
||||||
</body>
|
</body>
|
||||||
</html>
|
</html>
|
||||||
Loading…
x
Reference in New Issue
Block a user