Frontline

This commit is contained in:
Tomas Richtar 2025-06-06 11:02:47 +02:00
parent 896754c48a
commit 355fdd0c09
7 changed files with 303 additions and 142 deletions

View File

@ -2,12 +2,20 @@ export const ARROW_BODY_STYLE_CONSTANT = 1;
export const ARROW_BODY_STYLE_LINEAR = 2;
export const ARROW_BODY_STYLE_EXPONENTIAL = 3;
export const METERS = 'meters';
import * as turf from "@turf/turf";
//ARROW
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
/**
* @param {number[]} points - An array of 4 values [p0, p1, p2, p3] representing control points.
* @param {number} t - The relative position between p1 and p2 (range typically from 0 to 1).
* @returns {number} The interpolated value.
*/
export function cubicInterpolate(p, t) {
return p[1] + 0.5 * t * (p[2] - p[0] + t * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + t * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
@ -37,12 +45,18 @@ function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(arrowData, style, arrowHeadData) {
if (!style)
if (!arrowData || !(arrowData.points) || arrowData.points.length === 0) {
console.warn("getArrowPolygon: Invalid arrowData or empty points array.");
return [];
}
if (!style) {
style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 0,
minValue: 0
};
}
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSideOffsets(splinePoints, arrowData.offsetDistance, style);
@ -69,8 +83,7 @@ function averageBearing(points, count = 3) {
const bearings = [];
for (let i = points.length - count; i < points.length -1; i++) {
if (i >= 0) {
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
bearings.push(b);
bearings.push(turf.bearing(turf.point(points[i]), turf.point(points[i + 1])));
}
}
@ -90,7 +103,7 @@ function computeSplinePoints(points, splineStep = 10) {
const p3 = points[i + 2] || p2;
for (let j = 0; j < splineStep; j++) {
const t = j / splineStep;
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
result.push([lon, lat]);
}
@ -112,7 +125,7 @@ function computeSideOffsets(points, offsetMeters, style) {
const normalizedPosition = i / total;
let localOffsetDistance;
switch (style.calculation) {
switch (style.calculation) {
case ARROW_BODY_STYLE_LINEAR:
localOffsetDistance = offsetMeters * linearWidthCurve(normalizedPosition, style.range, style.minValue);
break;
@ -124,8 +137,8 @@ function computeSideOffsets(points, offsetMeters, style) {
localOffsetDistance = offsetMeters;
}
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: 'meters' }).geometry.coordinates);
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: 'meters' }).geometry.coordinates);
leftSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing - 90, { units: METERS }).geometry.coordinates);
rightSidePoints.push(turf.destination(turf.point(currentPoint), localOffsetDistance, bearing + 90, { units: METERS }).geometry.coordinates);
}
return { leftSidePoints, rightSidePoints };
@ -133,9 +146,9 @@ function computeSideOffsets(points, offsetMeters, style) {
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
const left = turf.destination(center, halfBase, bearing - 90, { units: METERS }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: METERS }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: METERS }).geometry.coordinates;
return [left, tip, right];
}
//GEOJSON
@ -162,7 +175,6 @@ export function getArrowPolygonEuclidean(
arrowData,
style= undefined,
arrowHeadData = undefined) {
if (!style)
style = {
calculation: ARROW_BODY_STYLE_CONSTANT,

View File

@ -4,7 +4,7 @@ import { getArrowPolygonEuclidean } from "athena-utils/shape/Arrow.js";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "athena-utils/shape/Arrow.js";
import { getCirclePolygonEuclidean } from "athena-utils/shape/BasicShapes.js";
import { getRectanglePolygonEuclidean } from "athena-utils/shape/BasicShapes.js";
import { getFrontline } from "athena-utils/shape/Frontline.js";
import { getFrontlineEuclidean } from "athena-utils/shape/Frontline.js";
import { LEFT_SIDE, RIGHT_SIDE, BOTH_SIDES } from "athena-utils/shape/Frontline.js";
// Polygon merge using Turf library
import {mergeTurfPolygons} from "athena-utils/shape/Polygon.js";
@ -171,18 +171,18 @@ const mergedRectangle = mergeTurfPolygons(circlePolygon, circlePolygonB);
const rectanglePoly = getRectanglePolygonEuclidean(circleCenter, rectangleSideA, rectangleSideB, rectangleRotation*-1);
const rectangleToTurfPoly = toTurfPolygon(rectanglePoly);
const frontlinePolygonA = getFrontline(frontlineDataA);
const frontlinePolygonA = getFrontlineEuclidean(frontlineDataA);
let frontlinePolygonMergedA = toTurfPolygon(frontlinePolygonA.body);
const frontlinePolygonB = getFrontline(frontlineDataB, protrusionDataB);
const frontlinePolygonB = getFrontlineEuclidean(frontlineDataB, protrusionDataB);
let frontlinePolygonMergedB = mergeTurfPolygons(frontlinePolygonB.body,frontlinePolygonB.protrusions[0]);
for (let i = 1; i < frontlinePolygonB.protrusions.length; i++)
{
frontlinePolygonMergedB = addTurfPolygonToMerge(frontlinePolygonMergedB, frontlinePolygonB.protrusions[i]);
}
const frontlinePolygonC = getFrontline(frontlineDataC, protrusionDataC);
const frontlinePolygonC = getFrontlineEuclidean(frontlineDataC, protrusionDataC);
let frontlinePolygonMergedLeft = mergeTurfPolygons(frontlinePolygonC.bodyLeft, frontlinePolygonC.protrusionsLeft[0]);
for (let i = 1; i < frontlinePolygonC.protrusionsLeft.length; i++) {

View File

@ -2,8 +2,8 @@ import * as turf from "@turf/turf";
import { toMercator, toWgs84 } from '@turf/projection';
//CIRCLE
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
const DISTANCE_PER_DEGREE_LONGITUDE = 111.320; // 2π×6378.1km/360
const DISTANCE_PER_DEGREE_LATITUDE = 110.574; // 2π×6356.75km/360
//GEOJSON
/**
@ -16,15 +16,20 @@ const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the circle polygon.
*/
export function getCirclePolygon(center, radius, density = 64) {
if (!center || !radius ) {
console.warn("getCirclePolygon: Invalid center, radius.");
return [];
}
const points = [];
const coords = {
latitude: center[1], // Latitude
longitude: center[0] // Longitude
latitude: center[1],
longitude: center[0]
};
const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180));
const distanceY = radius / distancePerDegreeLatitude;
const distanceX = radius / (DISTANCE_PER_DEGREE_LONGITUDE * Math.cos(coords.latitude * Math.PI / 180));
const distanceY = radius / DISTANCE_PER_DEGREE_LATITUDE;
for (let i = 0; i < density; i++) {
const angle = (i / density) * Math.PI * 2;
@ -37,6 +42,7 @@ export function getCirclePolygon(center, radius, density = 64) {
points.push(points[0]);
return turf.polygon([[...points]]);
/*
return {
"type": "Feature",
"geometry": {
@ -44,7 +50,7 @@ export function getCirclePolygon(center, radius, density = 64) {
"coordinates": [points]
},
"properties": {}
};
};*/
}
//GEOJSON
//CANVAS
@ -58,6 +64,11 @@ export function getCirclePolygon(center, radius, density = 64) {
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the circle polygon.
*/
export function getCirclePolygonEuclidean(center, radius, density) {
if (!center || !radius || !density) {
console.warn("getCirclePolygonEuclidean: Invalid center, radius or density.");
return [];
}
const points = [];
for (let i = 0; i < density; i++) {
const angle = (i / density) * Math.PI * 2;
@ -83,6 +94,11 @@ export function getCirclePolygonEuclidean(center, radius, density) {
* @returns {GeoJSON.Feature<GeoJSON.Polygon>} GeoJSON Feature representing the rectangle polygon.
*/
export function getRectanglePolygon(center, width, height, rotation = 0) {
if (!center || !width || !height) {
console.warn("getRectanglePolygon: Invalid center, width or height.");
return [];
}
const widthMeters = width * 1000 ;
const heightMeters = height * 1000;
@ -130,7 +146,12 @@ function rotateXY(x, y, cx, cy, angleRad) {
*
* @returns {{x: number, y: number}[]} An array of points representing the vertices of the rectangle polygon.
*/
export function getRectanglePolygonEuclidean(center, sideA, sideB, rotation) {
export function getRectanglePolygonEuclidean(center, sideA, sideB, rotation = 0) {
if (!center || !sideA || !sideB) {
console.warn("getRectanglePolygonEuclidean: Invalid center, sideA or sideB.");
return [];
}
const halfA = sideA / 2;
const halfB = sideB / 2;

View File

@ -1,25 +1,32 @@
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
import { cubicInterpolate } from "athena-utils/shape/Arrow.js";
import * as turf from '@turf/turf';
export const LEFT_SIDE = 1;
export const RIGHT_SIDE = 2;
export const BOTH_SIDES = 3;
export const METERS = 'meters';
/**
* @param {Object} arrowData - Object with data for arrow
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The density factor for the arrow's points.
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
* @param {number} arrowData.protrusionSize - Length of the square protrusion from the offset side.
* @param {Object, Object} frontlineData, protrusionData - Object containing parameters for the frontline.
* @param {{x: number, y: number}[]} frontlineData.points - List of points defining the base path of the frontline.
* @param {number} frontlineData.splineStep - The resolution of the spline interpolation (smaller = smoother curve).
* @param {number} frontlineData.spacing - Distance between interpolated points along the path.
* @param {number} frontlineData.offsetDistance - Distance to offset the entire shape from the base path.
* @param {string} frontlineData.style - Which side to draw the protrusions on (e.g., "LEFT_SIDE" or "RIGHT_SIDE").
* @param {number} protrusionData.Length - Length of each individual protrusion element.
* @param {number} protrusionData.StartSize - Width of protrusion at the start (base).
* @param {number} protrusionData.EndSize - Width of protrusion at the end (tip).
* @param {number} protrusionData.Gap - Distance between the starts of each protrusion.
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getFrontline(protrusionData) {
const style = protrusionData.style ?? LEFT_SIDE;
const splinePoints = computeSplinePoints(protrusionData.points, protrusionData.splineStep);
export function getFrontline(frontlineData, protrusionData = null) {
if (!frontlineData || !(frontlineData.points) || frontlineData.points.length === 0) {
console.warn("getFrontline: Invalid frontlineData or empty points array.");
return [];
}
const style = frontlineData.style ?? LEFT_SIDE;
const splinePoints = computeSplinePoints(frontlineData.points, frontlineData.splineStep);
let bodyPolygonLeft = [];
let bodyPolygonRight = [];
@ -28,47 +35,73 @@ export function getFrontline(protrusionData) {
const {
leftSidePoints: leftSidePointsLeftSide,
rightSidePoints: rightSidePointsLeftSide
} = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, LEFT_SIDE);
bodyPolygonLeft = [...leftSidePointsLeftSide, ...rightSidePointsLeftSide.reverse()];
} = computeSides(splinePoints, frontlineData.offsetDistance, LEFT_SIDE);
bodyPolygonLeft = [...leftSidePointsLeftSide, ...rightSidePointsLeftSide.reverse()];
const {
leftSidePoints: leftSidePointsRightSide,
rightSidePoints: rightSidePointsRightSide
} = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, RIGHT_SIDE);
bodyPolygonRight = [...leftSidePointsRightSide, ...rightSidePointsRightSide.reverse()];
} = computeSides(splinePoints, frontlineData.offsetDistance, RIGHT_SIDE);
bodyPolygonRight = [...leftSidePointsRightSide, ...rightSidePointsRightSide.reverse()];
}
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, protrusionData.style);
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, frontlineData.offsetDistance, frontlineData.style);
const bodyPolygon = [...leftSidePoints, ...rightSidePoints.reverse()];
let protrusionPolygons = [];
if (protrusionData == null) {
if (style === BOTH_SIDES) {
const polygonCoords = [
...bodyPolygonLeft,
...bodyPolygonRight,
bodyPolygonLeft[0]
];
return turf.polygon([[...polygonCoords]]);
} else {
const polygonCoords = [
...bodyPolygon,
bodyPolygon[0]
];
return turf.polygon([[...polygonCoords]]);
}
}
const polygonCoordsLeft= [
...bodyPolygonLeft,
bodyPolygonLeft[0]
];
const polygonCoordsRight= [
...bodyPolygonRight,
bodyPolygonRight[0]
];
const polygonCoords = [
...bodyPolygon,
bodyPolygon[0]
];
if (style === LEFT_SIDE) {
protrusionPolygons = computeProtrusion(leftSidePoints, protrusionData);
return {
body: turf.polygon([[...polygonCoords]]),
protrusions: computeProtrusion(leftSidePoints, protrusionData),
};
} else if (style === RIGHT_SIDE) {
protrusionPolygons = computeProtrusion(rightSidePoints, protrusionData);
} else if (style === BOTH_SIDES){
let protrusionPolygonsLeft = computeProtrusion(leftSidePoints, protrusionData);
let protrusionPolygonsRight = computeProtrusion(rightSidePoints, protrusionData);
//protrusionPolygonsA = [...computeProtrusion(leftSidePoints, protrusionData), ...computeProtrusion(rightSidePoints, protrusionData)];
return {
bodyLeft: bodyPolygonLeft,
bodyRight: bodyPolygonRight,
protrusionsLeft: protrusionPolygonsLeft,
protrusionsRight: protrusionPolygonsRight
};
return {
body: turf.polygon([[...polygonCoords]]),
protrusions: computeProtrusion(rightSidePoints, protrusionData)
};
} else if (style === BOTH_SIDES) {
return {
bodyLeft: turf.polygon([[...polygonCoordsLeft]]),
bodyRight: turf.polygon([[...polygonCoordsRight]]),
protrusionsLeft: computeProtrusion(leftSidePoints, protrusionData),
protrusionsRight: computeProtrusion(rightSidePoints, protrusionData)
};
}
return {
body: bodyPolygon,
protrusions: protrusionPolygons
};
}
function computeSplinePoints(points, density) {
let splinePoints = [];
if (points.length < 2) return points;
const splinePoints = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
@ -76,18 +109,17 @@ function computeSplinePoints(points, density) {
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let t = 0; t <= 1; t += density) {
splinePoints.push({
x: cubicInterpolate([p0.x, p1.x, p2.x, p3.x], t),
y: cubicInterpolate([p0.y, p1.y, p2.y, p3.y], t)
});
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
splinePoints.push([lon, lat]);
}
}
splinePoints.push(points[points.length - 1]);
return splinePoints;
}
function computeSides(splinePoints, spacing, offsetDistance, style = LEFT_SIDE) {
let dots = [];
function computeSides(splinePoints, offsetDistance, style = LEFT_SIDE) {
let leftSidePoints = [];
let rightSidePoints = [];
let accumulatedDistance = 0;
@ -95,98 +127,81 @@ function computeSides(splinePoints, spacing, offsetDistance, style = LEFT_SIDE)
for (let i = 1; i < splinePoints.length; i++) {
const previousPoint = splinePoints[i - 1];
const currentPoint = splinePoints[i];
const segmentLength = Math.hypot(currentPoint.x - previousPoint.x, currentPoint.y - previousPoint.y);
accumulatedDistance += segmentLength;
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
const distanceX = currentPoint.y - previousPoint.y;
const distanceY = previousPoint.x - currentPoint.x;
const length = Math.hypot(distanceX, distanceY);
let localOffsetDistance = offsetDistance;
const segmentDistance = turf.distance(turf.point(previousPoint), turf.point(currentPoint), { units: METERS });
accumulatedDistance += segmentDistance;
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
let leftPoint, rightPoint;
const offsetX = (distanceX / length) * localOffsetDistance;
const offsetY = (distanceY / length) * localOffsetDistance;
dots.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY });
dots.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY });
accumulatedDistance = 0;
if (style === LEFT_SIDE) {
leftSidePoints.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY});
rightSidePoints.push({ x: currentPoint.x, y: currentPoint.y});
} else if (style === RIGHT_SIDE) {
leftSidePoints.push({ x: currentPoint.x, y: currentPoint.y});
rightSidePoints.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY});
} else if (style === BOTH_SIDES) {
leftSidePoints.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY });
rightSidePoints.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY});
}
if (style === LEFT_SIDE) {
leftPoint = turf.destination(turf.point(currentPoint), offsetDistance, bearing - 90, { units: METERS }).geometry.coordinates;
rightPoint = currentPoint;
} else if (style === RIGHT_SIDE) {
leftPoint = currentPoint;
rightPoint = turf.destination(turf.point(currentPoint), offsetDistance, bearing + 90, { units: METERS }).geometry.coordinates;
} else if (style === BOTH_SIDES) {
leftPoint = turf.destination(turf.point(currentPoint), offsetDistance, bearing - 90, { units: METERS }).geometry.coordinates;
rightPoint = turf.destination(turf.point(currentPoint), offsetDistance, bearing + 90, { units: METERS }).geometry.coordinates;
}
leftSidePoints.push(leftPoint);
rightSidePoints.push(rightPoint);
accumulatedDistance = 0;
}
return { leftSidePoints, rightSidePoints };
}
function computeProtrusion(leftSidePoints, protrusionData) {
let protrusions = [];
const protrusions = [];
const segments = [];
let totalLength = 0;
for (let i = 0; i < leftSidePoints.length - 1; i++) {
const p0 = leftSidePoints[i];
const p1 = leftSidePoints[i + 1];
const dx = p1.x - p0.x;
const dy = p1.y - p0.y;
const length = Math.hypot(dx, dy);
segments.push({ p0, p1, dx, dy, length });
const length = turf.distance(turf.point(p0), turf.point(p1), { units: METERS });
const bearing = turf.bearing(turf.point(p0), turf.point(p1));
segments.push({ p0, p1, length, bearing });
totalLength += length;
}
const positions = [];
for (let d = 0; d <= totalLength - (protrusionData.protrusionGap + protrusionData.protrusionStartSize); d += protrusionData.protrusionGap) {
positions.push(d + protrusionData.protrusionStartSize);
for (let d = 0; d <= totalLength - (protrusionData.gap + protrusionData.startSize); d += protrusionData.gap) {
positions.push(d + protrusionData.startSize);
}
if (positions[positions.length - 1] < totalLength) {
positions.push(totalLength - protrusionData.protrusionStartSize);
positions.push(totalLength - protrusionData.startSize);
}
let currentSegmentIndex = 0;
let currentSegmentPos = 0;
for (const distance of positions) {
while (currentSegmentIndex < segments.length &&
currentSegmentPos + segments[currentSegmentIndex].length < distance) {
while (currentSegmentIndex < segments.length && currentSegmentPos + segments[currentSegmentIndex].length < distance) {
currentSegmentPos += segments[currentSegmentIndex].length;
currentSegmentIndex++;
}
if (currentSegmentIndex >= segments.length) break;
if (currentSegmentIndex >= segments.length) {
break;
}
const seg = segments[currentSegmentIndex];
const localDistance = distance - currentSegmentPos;
const t = localDistance / seg.length;
const pointOnSegment = turf.along(turf.lineString([seg.p0, seg.p1]), localDistance, { units: METERS }).geometry.coordinates;
const normalBearing = seg.bearing - 90;
const tangentBearing = seg.bearing;
const centerPoint = turf.destination(turf.point(pointOnSegment), protrusionData.length, normalBearing, { units: METERS }).geometry.coordinates;
const x = seg.p0.x + seg.dx * t;
const y = seg.p0.y + seg.dy * t;
const corner1 = turf.destination(turf.point(pointOnSegment), -protrusionData.startSize, tangentBearing, { units: METERS }).geometry.coordinates;
const corner2 = turf.destination(turf.point(pointOnSegment), protrusionData.startSize, tangentBearing, { units: METERS }).geometry.coordinates;
const corner3 = turf.destination(turf.point(centerPoint), protrusionData.endSize, tangentBearing, { units: METERS }).geometry.coordinates;
const corner4 = turf.destination(turf.point(centerPoint), -protrusionData.endSize, tangentBearing, { units: METERS }).geometry.coordinates;
const nx = -seg.dy / seg.length;
const ny = seg.dx / seg.length;
const centerX = x - nx * protrusionData.protrusionLength;
const centerY = y - ny * protrusionData.protrusionLength;
const ux = seg.dx / seg.length;
const uy = seg.dy / seg.length;
const corner1 = { x: x - ux * protrusionData.protrusionStartSize - nx * 0, y: y - uy * protrusionData.protrusionStartSize - ny * 0 };
const corner2 = { x: x + ux * protrusionData.protrusionStartSize - nx * 0, y: y + uy * protrusionData.protrusionStartSize - ny * 0 };
const corner3 = { x: centerX + ux * protrusionData.protrusionEndSize, y: centerY + uy * protrusionData.protrusionEndSize };
const corner4 = { x: centerX - ux * protrusionData.protrusionEndSize, y: centerY - uy * protrusionData.protrusionEndSize };
protrusions.push([corner1, corner2, corner3, corner4]);
const polygonCoords = [corner1, corner2, corner3, corner4, corner1];
const polygon = turf.polygon([polygonCoords]);
protrusions.push(polygon);
}
return protrusions;

View File

@ -1,42 +1,134 @@
//import { getArrowPolygon } from "athena-utils/shape/Arrow.js";
import { getArrowPolygon } from "athena-utils/shape/Arrow.js";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "athena-utils/shape/Arrow.js";
import { getCirclePolygon } from "athena-utils/shape/BasicShapes.js";
import { getRectanglePolygon } from "athena-utils/shape/BasicShapes.js";
import { getFrontline } from "athena-utils/shape/Frontline.js";
import { LEFT_SIDE, RIGHT_SIDE, BOTH_SIDES } from "athena-utils/shape/Frontline.js";
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
const map = new mapboxgl.Map({
container: 'map',
center: [10, 50],
zoom: 5
});
const map = new mapboxgl.Map({
container: 'map',
center: [10, 50],
zoom: 5
});
map.on('load', () => {
const fullPolygon = getArrowPolygon(arrowData, style, arrowHeadData);
const circleGeoJSON = getCirclePolygon(circleCenter, circleRadius, circleDensity);
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
const rectangleBGeoJSON = getRectanglePolygon([20, 20], 2200, 2200);
const frontlineGeoJSON = getFrontline(frontlineData, protrusionData);
var frontlineFeatureCollection = [];
var frontlineFeatureCollectionA = [];
if (frontlineData.style === BOTH_SIDES) {
frontlineFeatureCollection = {
type: "FeatureCollection",
features: [
frontlineGeoJSON.bodyLeft,
...frontlineGeoJSON.protrusionsLeft
]
};
frontlineFeatureCollectionA = {
type: "FeatureCollection",
features: [
frontlineGeoJSON.bodyRight,
...frontlineGeoJSON.protrusionsRight
]
};
}else {
frontlineFeatureCollection = {
type: "FeatureCollection",
features: [
frontlineGeoJSON.body,
...frontlineGeoJSON.protrusions
]
};
};
// FRONTLINE
map.addSource("frontlinePolygon", {
"type": "geojson",
"data": frontlineFeatureCollection
});
//ARROW
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
map.addLayer({
"id": "arrow-shape",
"id": "frontlinePolygon",
"type": "fill",
"source": "arrow-shape",
"source": "frontlinePolygon",
"layout": {},
"paint": {
"fill-color": "#ff0000",
"fill-opacity": 0.7
"fill-color": "blue",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "arrow-outline",
"id": "frontlinePolygon-outline",
"type": "line",
"source": "arrow-shape",
"source": "frontlinePolygon",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
if (frontlineData.style === BOTH_SIDES) {
map.addSource("frontlinePolygonA", {
"type": "geojson",
"data": frontlineFeatureCollectionA
});
map.addLayer({
"id": "frontlinePolygonA",
"type": "fill",
"source": "frontlinePolygonA",
"layout": {},
"paint": {
"fill-color": "green",
"fill-opacity": 0.6
}
});
map.addLayer({
"id": "frontlinePolygonA-outline",
"type": "line",
"source": "frontlinePolygonA",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
}
// FRONTLINE
//ARROW
if (fullPolygon.length != 0)
{
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
map.addLayer({
"id": "arrow-shape",
"type": "fill",
"source": "arrow-shape",
"paint": {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
map.addLayer({
"id": "arrow-outline",
"type": "line",
"source": "arrow-shape",
"paint": {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
}
//ARROW
// CIRCLE
@ -161,11 +253,31 @@ const arrowData = {
};
//ARROW
//FRONTLINE
const frontlinePoints = [
[10.42076, 40.08804],
[25.42076, 80.08804],
[65.42076, 75.08804]
];
const frontlineData = {
points: frontlinePoints,
splineStep: 0.08,
offsetDistance: 20000,
style: BOTH_SIDES,
};
const protrusionData = {
length: 30000,
startSize: 10000,
endSize: 1000,
gap: 30000,
};
//FRONTLINE
//CIRCLE
const circleCenter = [20, 80];
const circleRadius = 120;
const circleDensity = 20;
//CORCLE
//CIRCLE
//MAP GRID
function generateLatLonGrid(step = 10) {

View File

@ -75,5 +75,6 @@ export function mergePolygonFeatures(features) {
if (features.length === 1)
return features[0];
console.log("3" + features.length)
return turf.union(turf.featureCollection(features));
}

2
package-lock.json generated
View File

@ -2718,7 +2718,7 @@
"dev": true
},
"node_modules/athena-utils": {
"resolved": "git+https://git.projectathena.ca/andyaxxe/athena-utils.git#284cea819e",
"resolved": "git+https://git.projectathena.ca/andyaxxe/athena-utils.git#541d465195",
"dev": true,
"dependencies": {
"@turf/turf": "7.2.0"