All, no clean code

This commit is contained in:
Tomas Richtar 2025-05-27 16:01:42 +02:00
parent 93601754d8
commit 3129ec1fea
9 changed files with 1637 additions and 24 deletions

209
Arrow.js Normal file
View File

@ -0,0 +1,209 @@
export const ARROW_BODY_STYLE_CONSTANT = 1;
export const ARROW_BODY_STYLE_LINEAR = 2;
export const ARROW_BODY_STYLE_EXPONENTIAL = 3;
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
import * as turf from "@turf/turf";
function round(value, decimals = 6) {
return Number(value.toFixed(decimals));
}
// Převod z lon/lat do Web Mercator (v metrech)
function lonLatToMeters(lon, lat) {
const originShift = 2 * Math.PI * 6378137 / 2.0;
const mx = lon * originShift / 180.0 ;
const my = Math.log(Math.tan((90 + lat) * Math.PI / 360.0)) / (Math.PI / 180.0)* 150;
//console.log(JSON.stringify(mx, null, 2));
return {
x: mx,
y: my * originShift / 180.0
};
}
// Převod z Web Mercator zpět do lon/lat
function metersToLonLat(mx, my) {
const originShift = 2 * Math.PI * 6378137 / 2.0;
const lon = (mx / originShift) * 180.0;
const lat = 180 / Math.PI * (2 * Math.atan(Math.exp(my / originShift * Math.PI / 180.0)) - Math.PI / 2);
return {
lon: round(lon, 6),
lat: round(lat, 6)
};
}
/**
* @param {Object} arrowData - Object with data for arrow
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
*
* @param {Object} style - Object with data for the calculation style.
* @param {number} style.calculation - The style for the calculation
* @param {number} style.range - The range for the calculation style.
* @param {number} style.minValue - The minimum value used in the calculation.
*
* @param {Object|undefined} arrowHeadData - Optional data for the arrowhead.
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(
arrowData,
style= undefined,
arrowHeadData = undefined) {
if (!style)
style = {
calculation: ARROW_BODY_STYLE_CONSTANT,
range: 0,
minValue: 0
};
const splinePoints = computeSplinePoints(arrowData.points, arrowData.splineStep);
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, arrowData.spacing, arrowData.offsetDistance, style);
const arrowHead= arrowHeadData
? createIsoscelesTriangleFromSpline(splinePoints, arrowHeadData.widthArrow, arrowHeadData.lengthArrow)
: [];
const fullPolygon = [...leftSidePoints, ...arrowHead.reverse(), ...rightSidePoints.reverse()];
return fullPolygon;
}
function computeSplinePoints(points, splineStep) {
let splinePoints = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
const p1 = points[i];
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let t = 0; t <= 1; t += splineStep) {
splinePoints.push({
x: cubicInterpolate([p0.x, p1.x, p2.x, p3.x], t),
y: cubicInterpolate([p0.y, p1.y, p2.y, p3.y], t)
});
}
}
splinePoints.x /100;
return splinePoints;
}
function computeSides(splinePoints, spacing, offsetDistance, style) {
let leftSidePoints = [];
let rightSidePoints = [];
let accumulatedDistance = 0;
for (let i = 1; i < splinePoints.length; i++) {
const previousPoint = splinePoints[i - 1];
const currentPoint = splinePoints[i];
const segmentLength = Math.hypot(currentPoint.x - previousPoint.x, currentPoint.y - previousPoint.y);
accumulatedDistance += segmentLength;
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
let distanceX;
let distanceY;
if (i == 1 || i == splinePoints.length-1)
{
distanceX = (currentPoint.y - previousPoint.y);
distanceY = (previousPoint.x - currentPoint.x);
}else
{
distanceX = (currentPoint.y - previousPoint.y) ;
distanceY = (previousPoint.x - currentPoint.x) ;
}
const length = Math.hypot(distanceX, distanceY);
const normalizedPosition = i / (splinePoints.length - 1);
let localOffsetDistance;
switch (style.calculation) {
case ARROW_BODY_STYLE_LINEAR:
localOffsetDistance = offsetDistance * linearWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_EXPONENTIAL:
localOffsetDistance = offsetDistance * exponentialWidthCurve(normalizedPosition, style.range, style.minValue);
break;
case ARROW_BODY_STYLE_CONSTANT:
default:
localOffsetDistance = offsetDistance;
}
const offsetX = (distanceX / length) * localOffsetDistance;
const offsetY = (distanceY / length) * localOffsetDistance;
accumulatedDistance = 0;
leftSidePoints.push({ x: currentPoint.x + offsetX , y: currentPoint.y + offsetY });
rightSidePoints.push({ x: currentPoint.x - offsetX , y: currentPoint.y - offsetY });
}
}
return { leftSidePoints, rightSidePoints };
}
function createIsoscelesTriangleFromSpline(splinePoints, baseLengthMeters, heightMeters) {
if (splinePoints.length < 2) {
throw new Error("Potřeba alespoň dva body ve splinePoints");
}
const last = splinePoints[splinePoints.length - 1];
const prev = splinePoints[splinePoints.length - 2];
// Vektor směru (bearing)
const dx = last.x - prev.x;
const dy = last.y - prev.y;
const bearing = (Math.atan2(dx, dy) * 180 / Math.PI + 360) % 360;
const center = [last.x, last.y]; // GeoJSON formát: [lon, lat]
const halfBase = baseLengthMeters / 2*100000;
const leftBase = turf.destination(center, halfBase, bearing - 90, { units: 'meters' });
const rightBase = turf.destination(center, halfBase, bearing + 90, { units: 'meters' });
const apex = turf.destination(center, heightMeters*100000, bearing, { units: 'meters' });
return [
{ x: leftBase.geometry.coordinates[0], y: leftBase.geometry.coordinates[1] },
{ x: apex.geometry.coordinates[0], y: apex.geometry.coordinates[1] },
{ x: rightBase.geometry.coordinates[0], y: rightBase.geometry.coordinates[1] }
];
}
function computeArrowHead(splinePoints, width, length) {
const len = splinePoints.length;
const lastPoint = splinePoints[len - 1];
const secondLastPoint = splinePoints[len - 2];
//const x = (lastPoint.x - secondLastPoint.x);
//const y = (lastPoint.y - secondLastPoint.y);
const x = (lastPoint.x - secondLastPoint.x) ;
const y = (lastPoint.y - secondLastPoint.y) ;
const magnitude = Math.hypot(x, y);
const normalizedX = x / magnitude;
const normalizedY = y / magnitude;
return [
{ x: lastPoint.x - normalizedY * width , y: lastPoint.y + normalizedX * width},
{ x: (lastPoint.x + normalizedX) * length, y: (lastPoint.y + normalizedY) * length},
{ x: lastPoint.x + normalizedY * width , y: lastPoint.y - normalizedX * width},
];
}
function exponentialWidthCurve(normalizedPosition, range = 5, minValue = 0.1) {
return minValue + (1 - minValue) * Math.exp(-range * normalizedPosition);
}
function linearWidthCurve(normalizedPosition, range = 1, minValue = 0.1) {
return 1 + (minValue - 1) * normalizedPosition / range ;
}

View File

@ -1,16 +1,16 @@
const canvas = document.getElementById("canvas"); const canvas = document.getElementById("canvas");
// Compute arrow polygon // Compute arrow polygon
import { getArrowPolygon } from "athena-utils/shape/Arrow.js"; import { getArrowPolygon } from "./Arrow.js";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "athena-utils/shape/Arrow.js"; import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
import { getCirclePolygon } from "athena-utils/shape/BasicShapes.js"; import { getCirclePolygon } from "./BasicShapes.js";
import { getRectanglePolygon } from "athena-utils/shape/BasicShapes.js"; import { getRectanglePolygon } from "./BasicShapes.js";
import { getFrontline } from "athena-utils/shape/Frontline.js"; import { getFrontline } from "./Frontline.js";
import { LEFT_SIDE, RIGHT_SIDE, BOTH_SIDES } from "athena-utils/shape/Frontline.js"; import { LEFT_SIDE, RIGHT_SIDE, BOTH_SIDES } from "./Frontline.js";
// Polygon merge using Turf library // Polygon merge using Turf library
import {mergeTurfPolygons} from "athena-utils/shape/Polygon.js"; import {mergeTurfPolygons} from "./Polygon.js";
import {addTurfPolygonToMerge} from "athena-utils/shape/Polygon.js"; import {addTurfPolygonToMerge} from "./Polygon.js";
import {toTurfPolygon} from "athena-utils/shape/Polygon.js"; import {toTurfPolygon} from "./Polygon.js";
import {drawPolygon} from "athena-utils/shape/PolygonVisuals.js"; import {drawPolygon} from "./PolygonVisuals.js";
const circleCenter = {x:320, y:180}; const circleCenter = {x:320, y:180};
const circleRadius = 70; const circleRadius = 70;

137
BasicShapes.js Normal file
View File

@ -0,0 +1,137 @@
const distancePerDegreeLongitude = 111.320; // 2π×6378.1km/360
const distancePerDegreeLatitude = 110.574; // 2π×6356.75km/360
import * as turf from "@turf/turf";
import { toMercator, toWgs84 } from '@turf/projection';
/**
* @param {Object} center - The center point of the circle.
* @param {number} center.x
* @param {number} center.y
* @param {number} radius - The radius of the circle.
* @param {number} density - The number of points used to approximate the circle.
*
* @returns {Object} GeoJSON Feature representing the circle polygon.
*/
export function getCirclePolygon(center, radius, density = 64) {
const points = [];
const coords = {
latitude: center[1], // Latitude
longitude: center[0] // Longitude
};
const distanceX = radius / (distancePerDegreeLongitude * Math.cos(coords.latitude * Math.PI / 180));
const distanceY = radius / distancePerDegreeLatitude;
for (let i = 0; i < density; i++) {
const angle = (i / density) * Math.PI * 2;
const x = distanceX * Math.cos(angle);
const y = distanceY * Math.sin(angle);
points.push([coords.longitude + x, coords.latitude + y]);
}
// Close the circle by adding the first point again
points.push(points[0]);
return {
type: "Feature",
geometry: {
type: "Polygon",
coordinates: [points]
},
properties: {}
};
}
function getDistancePerDegreeLongitude(latitude) {
return 111.320 * Math.cos(latitude * Math.PI / 180);
}
/**
* @param {Object} center - The center point of the rectangle.
* @param {number} center.x
* @param {number} center.y
* @param {number} sideA - The length of the first side of the rectangle.
* @param {number} sideB - The length of the second side of the rectangle.
* @param {number} rotation - The angle (in radians) by which to rotate the rectangle.
*
* @returns {Object} GeoJSON Feature representing the rectangle polygon.
*/
export function getRectanglePolygon(center, width, height, rotation = 0) {
const widthMeters = width * 1000 ;
const heightMeters = height * 1000;
// 1. Střed převedeme do metrického systému (Web Mercator)
const centerMerc = toMercator(turf.point(center)).geometry.coordinates;
// 2. Vypočítáme rohy čtverce v metrech
const halfWidth = widthMeters / 2;
const halfHeight = heightMeters / 2;
let corners = [
[centerMerc[0] - halfWidth, centerMerc[1] + halfHeight], // topLeft
[centerMerc[0] + halfWidth, centerMerc[1] + halfHeight], // topRight
[centerMerc[0] + halfWidth, centerMerc[1] - halfHeight], // bottomRight
[centerMerc[0] - halfWidth, centerMerc[1] - halfHeight], // bottomLeft
];
// 3. Otočení (volitelně)
if (rotation !== 0) {
const rad = (rotation * Math.PI) / 180;
corners = corners.map(([x, y]) => rotateXY(x, y, centerMerc[0], centerMerc[1], rad));
}
// 4. Uzavřeme polygon a převedeme zpět do WGS84
corners.push(corners[0]);
const wgsCoords = corners.map(([x, y]) => toWgs84([x, y]));
return turf.polygon([wgsCoords]);
}
function rotateXY(x, y, cx, cy, angleRad) {
const dx = x - cx;
const dy = y - cy;
const cos = Math.cos(angleRad);
const sin = Math.sin(angleRad);
const rx = cx + dx * cos - dy * sin;
const ry = cy + dx * sin + dy * cos;
return [rx, ry];
}
/*
const [lon, lat] = center;
// Přepočet metrů na stupně:
const degLat = height / distancePerDegreeLatitude / 2;
const degLon = width / (distancePerDegreeLongitude * Math.cos(lat * Math.PI / 180)) / 2;
// Rohy bez rotace (v relative souřadnicích)
const corners = [
[-degLon, -degLat],
[ degLon, -degLat],
[ degLon, degLat],
[-degLon, degLat]
];
// Rotace a posun
const rotated = corners.map(([dx, dy]) => {
const x = dx;
const y = dy;
const rotatedX = x * Math.cos(rotation) - y * Math.sin(rotation);
const rotatedY = x * Math.sin(rotation) + y * Math.cos(rotation);
return [lon + rotatedX, lat + rotatedY];
});
// Uzavření polygonu
rotated.push(rotated[0]);
return {
type: "Feature",
geometry: {
type: "Polygon",
coordinates: [rotated]
},
properties: {}
};*/

193
Frontline.js Normal file
View File

@ -0,0 +1,193 @@
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
export const LEFT_SIDE = 1;
export const RIGHT_SIDE = 2;
export const BOTH_SIDES = 3;
/**
* @param {Object} arrowData - Object with data for arrow
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The density factor for the arrow's points.
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
* @param {number} arrowData.protrusionSize - Length of the square protrusion from the offset side.
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getFrontline(protrusionData) {
const style = protrusionData.style ?? LEFT_SIDE;
const splinePoints = computeSplinePoints(protrusionData.points, protrusionData.splineStep);
let bodyPolygonLeft = [];
let bodyPolygonRight = [];
if (style === BOTH_SIDES) {
const {
leftSidePoints: leftSidePointsLeftSide,
rightSidePoints: rightSidePointsLeftSide
} = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, LEFT_SIDE);
bodyPolygonLeft = [...leftSidePointsLeftSide, ...rightSidePointsLeftSide.reverse()];
const {
leftSidePoints: leftSidePointsRightSide,
rightSidePoints: rightSidePointsRightSide
} = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, RIGHT_SIDE);
bodyPolygonRight = [...leftSidePointsRightSide, ...rightSidePointsRightSide.reverse()];
}
const { leftSidePoints, rightSidePoints } = computeSides(splinePoints, protrusionData.spacing, protrusionData.offsetDistance, protrusionData.style);
const bodyPolygon = [...leftSidePoints, ...rightSidePoints.reverse()];
let protrusionPolygons = [];
if (style === LEFT_SIDE) {
protrusionPolygons = computeProtrusion(leftSidePoints, protrusionData);
} else if (style === RIGHT_SIDE) {
protrusionPolygons = computeProtrusion(rightSidePoints, protrusionData);
} else if (style === BOTH_SIDES){
let protrusionPolygonsLeft = computeProtrusion(leftSidePoints, protrusionData);
let protrusionPolygonsRight = computeProtrusion(rightSidePoints, protrusionData);
//protrusionPolygonsA = [...computeProtrusion(leftSidePoints, protrusionData), ...computeProtrusion(rightSidePoints, protrusionData)];
return {
bodyLeft: bodyPolygonLeft,
bodyRight: bodyPolygonRight,
protrusionsLeft: protrusionPolygonsLeft,
protrusionsRight: protrusionPolygonsRight
};
}
return {
body: bodyPolygon,
protrusions: protrusionPolygons
};
}
function computeSplinePoints(points, density) {
let splinePoints = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
const p1 = points[i];
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let t = 0; t <= 1; t += density) {
splinePoints.push({
x: cubicInterpolate([p0.x, p1.x, p2.x, p3.x], t),
y: cubicInterpolate([p0.y, p1.y, p2.y, p3.y], t)
});
}
}
return splinePoints;
}
function computeSides(splinePoints, spacing, offsetDistance, style = LEFT_SIDE) {
let dots = [];
let leftSidePoints = [];
let rightSidePoints = [];
let accumulatedDistance = 0;
for (let i = 1; i < splinePoints.length; i++) {
const previousPoint = splinePoints[i - 1];
const currentPoint = splinePoints[i];
const segmentLength = Math.hypot(currentPoint.x - previousPoint.x, currentPoint.y - previousPoint.y);
accumulatedDistance += segmentLength;
if (accumulatedDistance >= spacing || i === 1 || i === splinePoints.length - 1) {
const distanceX = currentPoint.y - previousPoint.y;
const distanceY = previousPoint.x - currentPoint.x;
const length = Math.hypot(distanceX, distanceY);
let localOffsetDistance = offsetDistance;
const offsetX = (distanceX / length) * localOffsetDistance;
const offsetY = (distanceY / length) * localOffsetDistance;
dots.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY });
dots.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY });
accumulatedDistance = 0;
if (style === LEFT_SIDE) {
leftSidePoints.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY});
rightSidePoints.push({ x: currentPoint.x, y: currentPoint.y});
} else if (style === RIGHT_SIDE) {
leftSidePoints.push({ x: currentPoint.x, y: currentPoint.y});
rightSidePoints.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY});
} else if (style === BOTH_SIDES) {
leftSidePoints.push({ x: currentPoint.x + offsetX, y: currentPoint.y + offsetY });
rightSidePoints.push({ x: currentPoint.x - offsetX, y: currentPoint.y - offsetY});
}
}
}
return { leftSidePoints, rightSidePoints };
}
function computeProtrusion(leftSidePoints, protrusionData) {
let protrusions = [];
const segments = [];
let totalLength = 0;
for (let i = 0; i < leftSidePoints.length - 1; i++) {
const p0 = leftSidePoints[i];
const p1 = leftSidePoints[i + 1];
const dx = p1.x - p0.x;
const dy = p1.y - p0.y;
const length = Math.hypot(dx, dy);
segments.push({ p0, p1, dx, dy, length });
totalLength += length;
}
const positions = [];
for (let d = 0; d <= totalLength - (protrusionData.protrusionGap + protrusionData.protrusionStartSize); d += protrusionData.protrusionGap) {
positions.push(d + protrusionData.protrusionStartSize);
}
if (positions[positions.length - 1] < totalLength) {
positions.push(totalLength - protrusionData.protrusionStartSize);
}
let currentSegmentIndex = 0;
let currentSegmentPos = 0;
for (const distance of positions) {
while (currentSegmentIndex < segments.length &&
currentSegmentPos + segments[currentSegmentIndex].length < distance) {
currentSegmentPos += segments[currentSegmentIndex].length;
currentSegmentIndex++;
}
if (currentSegmentIndex >= segments.length) break;
const seg = segments[currentSegmentIndex];
const localDistance = distance - currentSegmentPos;
const t = localDistance / seg.length;
const x = seg.p0.x + seg.dx * t;
const y = seg.p0.y + seg.dy * t;
const nx = -seg.dy / seg.length;
const ny = seg.dx / seg.length;
const centerX = x - nx * protrusionData.protrusionLength;
const centerY = y - ny * protrusionData.protrusionLength;
const ux = seg.dx / seg.length;
const uy = seg.dy / seg.length;
const corner1 = { x: x - ux * protrusionData.protrusionStartSize - nx * 0, y: y - uy * protrusionData.protrusionStartSize - ny * 0 };
const corner2 = { x: x + ux * protrusionData.protrusionStartSize - nx * 0, y: y + uy * protrusionData.protrusionStartSize - ny * 0 };
const corner3 = { x: centerX + ux * protrusionData.protrusionEndSize, y: centerY + uy * protrusionData.protrusionEndSize };
const corner4 = { x: centerX - ux * protrusionData.protrusionEndSize, y: centerY - uy * protrusionData.protrusionEndSize };
protrusions.push([corner1, corner2, corner3, corner4]);
}
return protrusions;
}

740
Map.js Normal file
View File

@ -0,0 +1,740 @@
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
const map = new mapboxgl.Map({
container: 'map',
center: [20, 80],
zoom: 4
});
import * as turf from "@turf/turf";
import { getArrowPolygon } from "./Arrow.js";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
import { getCirclePolygon } from "./BasicShapes.js";
import { getRectanglePolygon } from "./BasicShapes.js";
import { getFrontline } from "./Frontline.js";
import { LEFT_SIDE, RIGHT_SIDE, BOTH_SIDES } from "./Frontline.js";
// Polygon merge using Turf library
import {mergeTurfPolygons} from "./Polygon.js";
import {addTurfPolygonToMerge} from "./Polygon.js";
import {toTurfPolygon} from "./Polygon.js";
const circleCenter = {x:320, y:180};
const circleRadius = 70;
const circleDensity = 15;
const circleCenterB = {x:400, y:280};
const circleRadiusB = 70;
const circleDensityB = 15;
const rectangleCenter= {x:100, y:300};
const rectangleSideA = 70;
const rectangleSideB = 200;
const rectangleRotation = 40;
const frontlinePointsA = [
{ x: 120, y: 400 },
{ x: 200, y: 100 },
{ x: 350, y: 200 },
{ x: 350, y: 400 },
{ x: 450, y: 480 },
{ x: 550, y: 440 },
{ x: 600, y: 300 },
];
const frontlinePointsB = [
{ x: 420, y: 280 },
{ x: 430, y: 380 },
{ x: 500, y: 400 },
{ x: 520, y: 300 },
];
const frontlinePointsC = [
{ x: 450, y: 200 },
{ x: 500, y: 250 },
{ x: 550, y: 250 },
{ x: 550, y: 200 }
];
const frontlineDataA = {
points: frontlinePointsA,
splineStep: 0.08,
spacing: 10,
offsetDistance: 10,
protrusionLength: 15,
protrusionStartSize: 5,
protrusionEndSize: 2,
protrusionGap: 20,
style: LEFT_SIDE,
};
const frontlineDataB = {
points: frontlinePointsB,
splineStep: 0.02,
spacing: 10,
offsetDistance: 10,
protrusionLength: 15,
protrusionStartSize: 5,
protrusionEndSize: 5,
protrusionGap: 20,
style: RIGHT_SIDE,
};
const frontlineDataC = {
points: frontlinePointsC,
splineStep: 0.02,
spacing: 10,
offsetDistance: 10,
protrusionLength: 15,
protrusionStartSize: 5,
protrusionEndSize: 0,
protrusionGap: 20,
style: BOTH_SIDES,
};
/*
const arrowPolygonA = getArrowPolygon(arrowDataA, styleA, arrowHeadDataA);
const arrowPolygonB = getArrowPolygon(arrowDataB, styleB, arrowHeadDataB);
const arrowPolygonC = getArrowPolygon(arrowDataC, styleC);
const circlePolygon = getCirclePolygon(circleCenter, circleRadius, circleDensity);
const circlePolygonB = getCirclePolygon(circleCenterB, circleRadiusB, circleDensityB);
const rectanglePolygon = getRectanglePolygon(rectangleCenter, rectangleSideA, rectangleSideB, rectangleRotation);
const mergedTurfPoly = mergeTurfPolygons(arrowPolygonA, arrowPolygonC);
const mergedTurfPolyAll = addTurfPolygonToMerge(mergedTurfPoly, arrowPolygonB);
const mergedTurfPolyRectangle = addTurfPolygonToMerge(mergedTurfPolyAll, rectanglePolygon);
const mergedRectangle = mergeTurfPolygons(circlePolygon, circlePolygonB);
const rectanglePoly = getRectanglePolygon(circleCenter, rectangleSideA, rectangleSideB, rectangleRotation*-1);
const rectangleToTurfPoly = toTurfPolygon(rectanglePoly);
const frontlinePolygonA = getFrontline(frontlineDataA);
let frontlinePolygonMergedA = mergeTurfPolygons(frontlinePolygonA.body,frontlinePolygonA.protrusions[0]);
for (let i = 1; i < frontlinePolygonA.protrusions.length; i++)
{
frontlinePolygonMergedA = addTurfPolygonToMerge(frontlinePolygonMergedA, frontlinePolygonA.protrusions[i]);
}
const frontlinePolygonB = getFrontline(frontlineDataB);
let frontlinePolygonMergedB = mergeTurfPolygons(frontlinePolygonB.body,frontlinePolygonB.protrusions[0]);
for (let i = 1; i < frontlinePolygonB.protrusions.length; i++)
{
frontlinePolygonMergedB = addTurfPolygonToMerge(frontlinePolygonMergedB, frontlinePolygonB.protrusions[i]);
}
const frontlinePolygonC = getFrontline(frontlineDataC);
let frontlinePolygonMergedLeft = mergeTurfPolygons(frontlinePolygonC.bodyLeft, frontlinePolygonC.protrusionsLeft[0]);
for (let i = 1; i < frontlinePolygonC.protrusionsLeft.length; i++) {
frontlinePolygonMergedLeft = addTurfPolygonToMerge(frontlinePolygonMergedLeft, frontlinePolygonC.protrusionsLeft[i]);
}
let frontlinePolygonMergedRight = mergeTurfPolygons(frontlinePolygonC.bodyRight, frontlinePolygonC.protrusionsRight[0]);
for (let i = 1; i < frontlinePolygonC.protrusionsRight.length; i++) {
frontlinePolygonMergedRight = addTurfPolygonToMerge(frontlinePolygonMergedRight, frontlinePolygonC.protrusionsRight[i]);
}*/
//const circleGeoJSON = getCircleGeoJSON({x: 20, y: 80}, 2, 50, map);
const pointsB = [
{ x: 70, y: 38 },
{ x: 71, y: 45},
{ x: 65, y: 50 },
{ x: 70, y: 53}
];
const arrowDataB = {
points: pointsB,
splineStep: 0.01,
spacing: 0.01,
offsetDistance: 1
};
const styleB = {
calculation: ARROW_BODY_STYLE_LINEAR,
range: 1,
minValue: 0.1
};
const arrowHeadDataB = {
widthArrow: 1,
lengthArrow: 1
};
const arrowPolygonB = getArrowPolygon(arrowDataB, styleB, arrowHeadDataB);
const pointsC= [
{ x: 50, y: 38 },
{ x: 51, y: 45},
{ x: 45, y: 50 },
{ x: 48, y: 55}
];
const arrowDataC = {
points: pointsC,
splineStep: 0.02,
spacing: 1,
offsetDistance: 1
};
const styleC = {
calculation: ARROW_BODY_STYLE_LINEAR,
range: 1,
minValue: 0.1
};
const arrowHeadDataC = {
widthArrow: 1,
lengthArrow: 1
};
const arrowPolygonC = getArrowPolygon(arrowDataC, styleC, arrowHeadDataC);
const points = [
{ x: 80, y: 20 },
{ x: 81, y: 22},
{ x: 82, y: 28 },
{ x: 81, y: 30},
{ x: 80, y: 20}
];
// Turf polygon
const turfPolygon = turf.polygon([[
[20, 80],
[22, 81],
[28, 82],
[30, 81],
[20, 80]
]]);
const pointsA= [
{ x: 80, y: 38 },
{ x: 81, y: 45},
{ x: 75, y: 50 },
{ x: 78, y: 55}
];
const arrowDataA = {
points: pointsA,
splineStep: 0.2,
spacing: 3,
offsetDistance: 1
};
const styleA = {
calculation: ARROW_BODY_STYLE_LINEAR,
range: 1,
minValue: 0.1
};
const arrowHeadDataA = {
widthArrow: 1,
lengthArrow: 1
};
const arrowPolygonA = getArrowPolygon(arrowDataA, styleA, arrowHeadDataA);
const latLonGrid = generateLatLonGrid(5);
function createIsoscelesTriangle(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
// Výpočet bodů základny (levý a pravý bod)
const leftBase = turf.destination(center, halfBase, bearing - 90, { units: 'meters' });
const rightBase = turf.destination(center, halfBase, bearing + 90, { units: 'meters' });
// Výpočet vrcholu trojúhelníku směr daný bearing (nahoru např. 0°)
const apex = turf.destination(center, heightMeters, bearing, { units: 'meters' });
const triangle = turf.polygon([[
leftBase.geometry.coordinates,
rightBase.geometry.coordinates,
apex.geometry.coordinates,
leftBase.geometry.coordinates // Uzavření polygonu
]]);
return triangle;
}
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
function interpolatePointsCatmullRom(points, segments = 10) {
if (points.length < 2) return points;
const extended = [points[0], ...points, points[points.length - 1]];
const interpolated = [];
for (let i = 1; i < extended.length - 2; i++) {
for (let j = 0; j < segments; j++) {
const t = j / segments;
const lon = cubicInterpolate([extended[i - 1][0], extended[i][0], extended[i + 1][0], extended[i + 2][0]], t);
const lat = cubicInterpolate([extended[i - 1][1], extended[i][1], extended[i + 1][1], extended[i + 2][1]], t);
interpolated.push([lon, lat]);
}
}
interpolated.push(points[points.length - 1]);
return interpolated;
}
function computeSideOffsets(points, offsetMeters) {
const left = [];
const right = [];
for (let i = 1; i < points.length; i++) {
const prev = points[i - 1];
const curr = points[i];
const bearing = turf.bearing(turf.point(prev), turf.point(curr));
const leftOffset = turf.destination(turf.point(curr), offsetMeters, bearing - 90, { units: 'meters' });
const rightOffset = turf.destination(turf.point(curr), offsetMeters, bearing + 90, { units: 'meters' });
left.push(leftOffset.geometry.coordinates);
right.push(rightOffset.geometry.coordinates);
}
return { left, right };
}
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing) {
const halfBase = baseLengthMeters / 2;
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
console.log("Aktuální bod:", left);
console.log("Aktuální bod:", right);
console.log("Aktuální bod:", tip);
return [left, right, tip];
}
function drawArrowPolygon(map, basePoints, offset = 10000) {
const smooth = interpolatePointsCatmullRom(basePoints, 20);
const { leftSidePoints, rightSidePoints } = computeSidesWGS84(smooth, offset);
console.log("Aktuální bod:", tip);
const end = smooth[smooth.length - 1];
const prev = smooth[smooth.length - 2];
const bearing = turf.bearing(turf.point(prev), turf.point(end));
const triangleCoords = createIsoscelesTriangleCoords(turf.point(end), offset * 2, offset * 3, bearing);
const polygonCoords = [
...leftSidePoints,
...triangleCoords,
...rightSidePoints.reverse(),
leftSidePoints[0]
];
const fullPolygon = turf.polygon([[...polygonCoords]]);
map.addSource("arrow-shape", {
type: "geojson",
data: fullPolygon
});
map.addLayer({
id: "arrow-shape",
type: "fill",
source: "arrow-shape",
paint: {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
}
function computeSidesWGS84(points, offsetDistanceMeters = 1000) {
const leftSidePoints = [];
const rightSidePoints = [];
for (let i = 1; i < points.length; i++) {
const prev = points[i - 1];
const curr = points[i];
const bearing = turf.bearing(turf.point(prev), turf.point(curr));
const leftBearing = bearing - 90;
const rightBearing = bearing + 90;
const leftPoint = turf.destination(turf.point(curr), offsetDistanceMeters, leftBearing, { units: 'meters' });
const rightPoint = turf.destination(turf.point(curr), offsetDistanceMeters, rightBearing, { units: 'meters' });
leftSidePoints.push(leftPoint.geometry.coordinates);
rightSidePoints.push(rightPoint.geometry.coordinates);
}
// První bod
const first = points[0];
const second = points[1];
const initialBearing = turf.bearing(turf.point(first), turf.point(second));
const leftInitial = turf.destination(turf.point(first), offsetDistanceMeters, initialBearing - 90, { units: 'meters' });
const rightInitial = turf.destination(turf.point(first), offsetDistanceMeters, initialBearing + 90, { units: 'meters' });
leftSidePoints.unshift(leftInitial.geometry.coordinates);
rightSidePoints.unshift(rightInitial.geometry.coordinates);
console.log("Aktuální bod:", leftSidePoints);
console.log("Aktuální bod:", rightSidePoints);
return {
leftSidePoints,
rightSidePoints
};
}
function drawSideLines(map, sides, prefix = "arrow-side") {
map.addSource(`${prefix}-left`, {
type: "geojson",
data: turf.lineString(sides.leftSidePoints)
});
map.addLayer({
id: `${prefix}-left`,
type: "line",
source: `${prefix}-left`,
paint: {
"line-color": "blue",
"line-width": 2
}
});
map.addSource(`${prefix}-right`, {
type: "geojson",
data: turf.lineString(sides.rightSidePoints)
});
map.addLayer({
id: `${prefix}-right`,
type: "line",
source: `${prefix}-right`,
paint: {
"line-color": "green",
"line-width": 2
}
});
}
function drawSmoothLineThroughPoints(map, points, lineId = "smooth-line") {
const smoothPoints = interpolatePointsCatmullRom(points, 20);
const line = turf.lineString(smoothPoints);
map.addSource(lineId, {
type: "geojson",
data: line
});
map.addLayer({
id: lineId,
type: "line",
source: lineId,
paint: {
"line-color": "red",
"line-width": 3
}
});
// Boční linie
const sides = computeSidesWGS84(smoothPoints, 10000); // 10 km offset
drawSideLines(map, sides, lineId + "-sides");
// Šipka na konci
const lastPoint = smoothPoints[smoothPoints.length - 1];
const secondLastPoint = smoothPoints[smoothPoints.length - 2];
const bearing = turf.bearing(turf.point(secondLastPoint), turf.point(lastPoint));
const triangle = createIsoscelesTriangle(turf.point(lastPoint), 60000, 80000, bearing); // 20km základna, 30km výška
map.addSource(lineId + "-arrow", {
type: "geojson",
data: triangle
});
map.addLayer({
id: lineId + "-arrow",
type: "fill",
source: lineId + "-arrow",
paint: {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
}
map.on('load', () => {
const points = [
[14.42076, 50.08804], // Praha
[15.0, 50.0],
[16.3725, 48.2082], // Vídeň
[17.0, 49.0],
[13.4050, 52.52] // Berlín
];
function createIsoscelesTriangle(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
const leftBase = turf.destination(center, halfBase, bearing - 90, { units: 'meters' });
const rightBase = turf.destination(center, halfBase, bearing + 90, { units: 'meters' });
const apex = turf.destination(center, heightMeters, bearing, { units: 'meters' });
return turf.polygon([[
leftBase.geometry.coordinates,
rightBase.geometry.coordinates,
apex.geometry.coordinates,
leftBase.geometry.coordinates
]]);
}
const center = turf.point([52.95, 69.95]); // výchozí střed základny
// Vytvoř polygon trojúhelníku
const triangle = createIsoscelesTriangle(center, 40000, 100000, 10); // 2 km základna, 1 km výška, směr 0° (na sever)
map.addSource("triangle", {
type: "geojson",
data: triangle
});
map.addLayer({
id: "triangle",
type: "fill",
source: "triangle",
paint: {
"fill-color": "purple",
"fill-opacity": 0.5
}
});
map.addLayer({
id: "triangle-outline",
type: "line",
source: "triangle",
paint: {
"line-color": "#000",
"line-width": 2
}
});
map.addSource("latLonGrid", {
type: "geojson",
data: latLonGrid
});
map.addLayer({
id: "latLonGrid",
type: "line",
source: "latLonGrid",
layout: {},
paint: {
"line-color": "#888",
"line-width": 1,
"line-opacity": 0.5
}
});
// Generuj GeoJSON pro kruh
const circleGeoJSON = getCirclePolygon([20, 80], 120, 20);
const circle = turf.circle([20, 80], 120000, { units: "meters", steps: 64 });
const rectangleGeoJSON = getRectanglePolygon([20, 80], 2200, 2200);
const fsdafds = toTurfPolygon(points);
const arrowBGeoJSON = toTurfPolygon(arrowPolygonB);
const arrowCGeoJSON = toTurfPolygon(arrowPolygonC);
const arrowAGeoJSON = toTurfPolygon(arrowPolygonA);
//console.log(JSON.stringify(arrowAGeoJSON, null, 2));
// Arrow
// Přidání GeoJSON jako zdroj
map.addSource("arrowPolygonA", {
type: "geojson",
data: arrowAGeoJSON
});
// Vrstva pro výplň polygonu
map.addLayer({
id: "arrowPolygonA",
type: "fill",
source: "arrowPolygonA",
layout: {},
paint: {
"fill-color": "pink",
"fill-opacity": 0.6
}
});
// Vrstva pro obrys polygonu
map.addLayer({
id: "arrowPolygonA-outline",
type: "line",
source: "arrowPolygonA",
paint: {
"line-color": "#000",
"line-width": 3
}
});
// Arrow
// Přidání GeoJSON jako zdroj
map.addSource("arrowPolygonB", {
type: "geojson",
data: arrowBGeoJSON
});
// Vrstva pro výplň polygonu
map.addLayer({
id: "arrowPolygonB",
type: "fill",
source: "arrowPolygonB",
layout: {},
paint: {
"fill-color": "yellow",
"fill-opacity": 0.6
}
});
// Vrstva pro obrys polygonu
map.addLayer({
id: "arrowPolygonB-outline",
type: "line",
source: "arrowPolygonB",
paint: {
"line-color": "#000",
"line-width": 3
}
});
// Arrow
// Přidání GeoJSON jako zdroj
map.addSource("arrowPolygonC", {
type: "geojson",
data: arrowCGeoJSON
});
// Vrstva pro výplň polygonu
map.addLayer({
id: "arrowPolygonC",
type: "fill",
source: "arrowPolygonC",
layout: {},
paint: {
"fill-color": "yellow",
"fill-opacity": 0.6
}
});
// Vrstva pro obrys polygonu
map.addLayer({
id: "arrowPolygonC-outline",
type: "line",
source: "arrowPolygonC",
paint: {
"line-color": "#000",
"line-width": 3
}
});
// CIRCLE
// Přidání GeoJSON jako zdroj
map.addSource("circlePolygon", {
"type": "geojson",
"data": circleGeoJSON
});
// Přidání vrstvy pro vykreslení polygonu
map.addLayer({
"id": "circlePolygon",
"type": "fill",
"source": "circlePolygon",
"layout": {},
"paint": {
"fill-color": "blue",
"fill-opacity": 0.6
}
});
// Přidání outline pro polygon
map.addLayer({
"id": "circlePolygon-outline",
"type": "line",
"source": "circlePolygon",
"paint": {
"line-color": "#000",
"line-width": 3
}
});
// RECTANGLE
map.addSource("rectanglePolygon", {
"type": "geojson",
"data": rectangleGeoJSON
});
// Přidání vrstvy pro vykreslení polygonu
map.addLayer({
"id": "rectanglePolygon",
"type": "fill",
"source": "rectanglePolygon",
"layout": {},
"paint": {
"fill-color": "red",
"fill-opacity": 0.6
}
});
// Přidání outline pro polygon
map.addLayer({
"id": "rectanglePolygon-outline",
"type": "line",
"source": "rectanglePolygon",
"paint": {
"line-color": "#000",
"line-width": 3
}
});
});
function generateLatLonGrid(step = 10) {
const features = [];
// Rovnoběžky (latitudes)
for (let lat = -80; lat <= 80; lat += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
},
properties: {
type: "latitude",
value: lat
}
});
}
// Poledníky (longitudes)
for (let lon = -180; lon <= 180; lon += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
},
properties: {
type: "longitude",
value: lon
}
});
}
return {
type: "FeatureCollection",
features
};
}

205
MapArrow.js Normal file
View File

@ -0,0 +1,205 @@
mapboxgl.accessToken = 'pk.eyJ1Ijoib3V0ZG9vcm1hcHBpbmdjb21wYW55IiwiYSI6ImNqYmh3cDdjYzNsMnozNGxsYzlvMmk2bTYifQ.QqcZ4LVoLWnXafXdjZxnZg';
const map = new mapboxgl.Map({
container: 'map',
center: [10, 50],
zoom: 5
});
import * as turf from "@turf/turf";
import { ARROW_BODY_STYLE_CONSTANT, ARROW_BODY_STYLE_LINEAR, ARROW_BODY_STYLE_EXPONENTIAL } from "./Arrow.js";
map.on('load', () => {
const points = [
[1.42076, 40.08804],
[358.4050, 50.52]
];
const fullPolygon = getArrowPolygon(points, 20000); // offset 20 km
map.addSource("arrow-shape", { type: "geojson", data: fullPolygon });
map.addLayer({
id: "arrow-shape",
type: "fill",
source: "arrow-shape",
paint: {
"fill-color": "#ff0000",
"fill-opacity": 0.7
}
});
const grid = generateLatLonGrid(10);
map.addSource("latLonGrid", { type: "geojson", data: grid });
map.addLayer({
id: "latLonGrid",
type: "line",
source: "latLonGrid",
paint: {
"line-color": "#888",
"line-width": 1,
"line-opacity": 0.5
}
});
// Obrys (černý)
map.addLayer({
id: "arrow-outline",
type: "line",
source: "arrow-shape",
paint: {
"line-color": "#000000",
"line-width": 2,
"line-opacity": 1
}
});
});
const points = [
{ x: 70, y: 38 },
{ x: 71, y: 45},
{ x: 65, y: 50 },
{ x: 70, y: 53}
];
const arrowData = {
points: points,
splineStep: 0.01,
spacing: 0.01,
offsetDistance: 10000
};
const style = {
calculation: ARROW_BODY_STYLE_LINEAR,
range: 1,
minValue: 0.1
};
const arrowHeadData = {
widthArrow: 1,
lengthArrow: 1
};
// Cubic interpolation source from https://www.paulinternet.nl/?page=bicubic
function cubicInterpolate(p, x) {
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
/**
* @param {Object} arrowData - Object with data for arrow
* @param {{x: number, y: number}[]} arrowData.points - List of points defining the arrow's path.
* @param {number} arrowData.splineStep - The step size for the spline interpolation.
* @param {number} arrowData.spacing - The spacing between the points along the arrow.
* @param {number} arrowData.offsetDistance - The offset distance for the arrow's path (width).
*
* @param {Object} style - Object with data for the calculation style.
* @param {number} style.calculation - The style for the calculation
* @param {number} style.range - The range for the calculation style.
* @param {number} style.minValue - The minimum value used in the calculation.
*
* @param {Object|undefined} arrowHeadData - Optional data for the arrowhead.
* @param {number} arrowHeadData.widthArrow - The width of the arrowhead.
* @param {number} arrowHeadData.lengthArrow - The length of the arrowhead.
*
* @returns {{x: number, y: number}[]} - An array of points representing the arrow polygon.
*/
export function getArrowPolygon(arrowData, style= undefined, arrowHeadData = undefined) {
const splineStep = 20;
const smooth = computeSplinePoints(arrowData.points, splineStep);
const { leftSidePoints, rightSidePoints } = computeSideOffsets(smooth, arrowData.offsetDistance);
const end = smooth[smooth.length -1];
const bearing = averageBearing(smooth, 3);
const triangle = createIsoscelesTriangleCoords(turf.point(end), arrowData.offsetDistance * 5, arrowData.offsetDistance * 5, bearing);
const polygonCoords = [
...leftSidePoints,
...triangle,
...rightSidePoints.reverse(),
leftSidePoints[0]
];
return turf.polygon([[...polygonCoords]]);
}
function averageBearing(points, count = 3) {
const bearings = [];
for (let i = points.length - count; i < points.length -1; i++) {
if (i >= 0) {
const b = turf.bearing(turf.point(points[i]), turf.point(points[i + 1]));
bearings.push(b);
}
}
// Průměr s korekcí kruhového rozsahu
const sinSum = bearings.reduce((sum, b) => sum + Math.sin(b * Math.PI / 180), 0);
const cosSum = bearings.reduce((sum, b) => sum + Math.cos(b * Math.PI / 180), 0);
return Math.atan2(sinSum, cosSum) * 180 / Math.PI;
}
function computeSplinePoints(points, segments = 10) {
if (points.length < 2) return points;
const result = [];
for (let i = 0; i < points.length - 1; i++) {
const p0 = points[i === 0 ? i : i - 1];
const p1 = points[i];
const p2 = points[i + 1];
const p3 = points[i + 2] || p2;
for (let j = 0; j < segments; j++) {
const t = j / segments;
const lon = cubicInterpolate([p0[0], p1[0], p2[0], p3[0]], t);
const lat = cubicInterpolate([p0[1], p1[1], p2[1], p3[1]], t);
result.push([lon, lat]);
}
}
result.push(points[points.length - 1]);
return result;
}
function computeSideOffsets(points, offsetMeters) {
let leftSidePoints = [];
let rightSidePoints = [];
for (let i = 1; i < points.length; i++) {
const previousPoint = points[i - 1];
const currentPoint = points[i];
const bearing = turf.bearing(turf.point(previousPoint), turf.point(currentPoint));
leftSidePoints.push(turf.destination(turf.point(currentPoint), offsetMeters, bearing - 90, { units: 'meters' }).geometry.coordinates);
rightSidePoints.push(turf.destination(turf.point(currentPoint), offsetMeters, bearing + 90, { units: 'meters' }).geometry.coordinates);
}
return { leftSidePoints, rightSidePoints };
}
function createIsoscelesTriangleCoords(center, baseLengthMeters, heightMeters, bearing = 0) {
const halfBase = baseLengthMeters / 2;
const left = turf.destination(center, halfBase, bearing - 90, { units: 'meters' }).geometry.coordinates;
const right = turf.destination(center, halfBase, bearing + 90, { units: 'meters' }).geometry.coordinates;
const tip = turf.destination(center, heightMeters, bearing, { units: 'meters' }).geometry.coordinates;
return [left, tip, right];
}
function generateLatLonGrid(step = 10) {
const features = [];
for (let lat = -80; lat <= 80; lat += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 37 }, (_, i) => [-180 + i * 10, lat])
}
});
}
for (let lon = -180; lon <= 180; lon += step) {
features.push({
type: "Feature",
geometry: {
type: "LineString",
coordinates: Array.from({ length: 17 }, (_, i) => [lon, -80 + i * 10])
}
});
}
return {
type: "FeatureCollection",
features
};
}

79
Polygon.js Normal file
View File

@ -0,0 +1,79 @@
import * as turf from "@turf/turf";
/**
* Converts an array of canvas-compatible points into a Turf.js Polygon.
*
* @param {{x: number, y: number}[]} points - Array of points with x and y properties.
*
* @returns {import('@turf/turf').Feature<import('@turf/turf').Polygon> | null} A Turf.js Polygon feature, or null if input is invalid.
*/
export function toTurfPolygon(points) {
if (!points || points.length < 3) {
console.error("Invalid input for polygon:", points);
return null;
}
const coords = points.map(p => [p.y, p.x]);
coords.push(coords[0]);
return turf.polygon([coords]);
}
/**
* Merges two polygons (in canvas format) into a single Turf.js polygon using turf.union.
*
* @param {{x: number, y: number}[]} polygonA - First polygon (array of points).
* @param {{x: number, y: number}[]} polygonB - Second polygon (array of points).
*
* @returns {import('@turf/turf').Feature<import('@turf/turf').Polygon> | null} A merged Turf.js polygon, or null on failure.
*/
export function mergeTurfPolygons(polygonA, polygonB) {
const turfPolygonA = toTurfPolygon(polygonA);
const turfPolygonB = toTurfPolygon(polygonB);
return turf.union(turf.featureCollection([turfPolygonA, turfPolygonB]));
}
/**
* Adds a new polygon to an existing merged Turf.js polygon.
*
* @param {import('@turf/turf').Feature<import('@turf/turf').Polygon>} polygonA - Existing merged Turf.js polygon.
* @param {{x: number, y: number}[]} polygonB - New polygon in canvas point format to add to the merge.
*
* @returns {import('@turf/turf').Feature<import('@turf/turf').Polygon>} Updated merged Turf.js polygon.
*/
export function addTurfPolygonToMerge(polygonA, polygonB) {
const testB = toTurfPolygon(polygonB);
return turf.union(turf.featureCollection([polygonA, testB]));
}
/**
* @param {{x: number, y: number}[][]} polygons
* @returns {Feature<Polygon | MultiPolygon, GeoJsonProperties>}
*/
export function mergePolygons(polygons) {
if (!polygons || polygons.length === 0)
return undefined;
if (polygons.length === 1)
return toTurfPolygon(polygons[0]);
return turf.union(turf.featureCollection(polygons.map(p => toTurfPolygon(p))));
}
/**
*
* @param {Array<Feature<Polygon | MultiPolygon, GeoJsonProperties>>|undefined} features
* @returns {Feature<Polygon | MultiPolygon, GeoJsonProperties>|undefined|*}
*/
export function mergePolygonFeatures(features) {
if (!features || features.length === 0)
return undefined;
if (features.length === 1)
return features[0];
return turf.union(turf.featureCollection(features));
}

45
PolygonVisuals.js Normal file
View File

@ -0,0 +1,45 @@
// Converts a Turf polygon into an array of canvas-compatible points
function toCanvasPolygon(turfPolygon) {
if (!turfPolygon || !turfPolygon.geometry) return [];
let polygons = [];
if (turfPolygon.geometry.type === 'Polygon') {
polygons.push(turfPolygon.geometry.coordinates[0]);
}
else if (turfPolygon.geometry.type === 'MultiPolygon') {
turfPolygon.geometry.coordinates.forEach(polygon => {
polygons.push(polygon[0]);
});
}
else {
console.error("Unsupported geometry type:", turfPolygon.geometry.type);
return [];
}
return polygons.map(coords =>
coords.slice(0, -1).map(coord => ({ x: coord[0], y: coord[1] }))
);
}
// Draws a polygon on the canvas with a given color
export function drawPolygon(turfPolygon, color, canvas) {
const ctx = canvas.getContext("2d");
ctx.fillStyle = color;
const polygons = toCanvasPolygon(turfPolygon);
if (!polygons.length) {
console.log("No valid polygons to draw.");
return;
}
polygons.forEach(points => {
if (points.length < 3) return;
ctx.beginPath();
ctx.moveTo(points[0].x, points[0].y);
points.forEach(p => ctx.lineTo(p.x, p.y));
ctx.closePath();
ctx.fill();
});
}

View File

@ -1,14 +1,19 @@
<!doctype html> <!DOCTYPE html>
<html lang="en"> <html>
<head> <head>
<meta charset="UTF-8" /> <meta charset="utf-8">
<link rel="icon" type="image/svg+xml" href="/vite.svg" /> <title>Display a map on a webpage</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no">
<title>Vite App</title> <link href="https://api.mapbox.com/mapbox-gl-js/v3.12.0/mapbox-gl.css" rel="stylesheet">
<script src="https://api.mapbox.com/mapbox-gl-js/v3.12.0/mapbox-gl.js"></script>
<style>
body { margin: 0; padding: 0; }
#map { position: absolute; top: 0; bottom: 0; width: 100%; }
</style>
</head> </head>
<body> <body>
<div id="app"></div> <div id="map"></div>
<canvas id="canvas" width="800" height="600"></canvas> <script type="module" src="MapArrow.js"></script>
<script type="module" src="ArrowPoints.js"></script>
</body> </body>
</html> </html>